
Criticality-Guided Deep Reinforcement Learning for
Motion Planning

Linling Xu†, Fenghua Wu‡, Yuan Zhou‡∗, Hesuan Hu§, Zuohua Ding†∗, Yang Liu†‡
†Zhejiang Sci-Tech University, Hangzhou 310018, China

Email: 201930605055@mails.zstu.edu.cn, zuohuading@zstu.edu.cn
‡Nanyang Technological University, Singapore 639798

Email: {fenghua.wu, y.zhou, yangliu}@ntu.edu.sg
§ Xidian University, Xi’an, Shaanxi 710071, China

Email: hshu@mail.xidian.edu.cn
∗Corresponding authors

Abstract—Real-time and efficient collision avoidance is still
challenging for mobile robots running in dynamic and crowded
environments. Recent research shows that deep reinforcement
learning (DRL) provides a framework to plan collision-free
trajectories efficiently. However, most of the current DRL-based
methods focus on a fixed number of obstacles in the environments,
which limits their applications. In this paper, we propose a
learning-based model, Crit-LSTM-DRL, for a robot moving in
environments with a variable number of obstacles. It combines
an LSTM (Long Short-Term Memory) model and a value-based
DRL model. Given the states of a set of obstacles, Crit-LSTM-
DRL first sorts the obstacles according to their possible collision
time to the robot and then feeds to the LSTM model to generate
a fixed-size hidden state. Then, the value-based DRL model takes
the hidden state and robot state as input to compute the value.
Hence, at any time step, an action is selected that maximizes
the value function defined in the DRL framework. Finally, we
compare the performance of Crit-LSTM-DRL with a state-of-
the-art DRL-based planning method that aims to deal with a
variable number of obstacles. The simulation results show that
the three models of Crit-LSTM-DRL can improve the success
rate by 4%, 20.1%, and 3.8%, and reduce the collision rate by
35.5%, 75%, and 66.7%, respectively.

Index Terms—Motion Planning, Collision Avoidance, Obstacle
Criticality, Deep Reinforcement Learning

I. INTRODUCTION

Mobile robots can help people to do labor-consuming and
dangerous tasks, such as environmental surveillance, disaster
rescue, and minefield mapping [1]. Motion planning is the
essential requirement for mobile robots to complete different
tasks. It aims to generate a collision-free trajectory from an
initial position to a destination. However, real-time collision
avoidance is still challenging, especially in unknown and
crowded environments.

In the past decades, researchers have proposed many meth-
ods for collision avoidance, such as discrete event systems
[2]–[4], roadmap-based methods [5], [6], cell decomposition
methods [7], state lattices [8], sampling-based methods [9],
artificial potential fields [10], reciprocal collision avoidance
[11], [12], and mathematical programming [13], [14]. How-
ever, in crowded environments, these methods may cause a
high computation cost and sacrifice real-time efficiency.

Recently, to improve computational efficiency, deep re-
inforcement learning (DRL) has been applied for motion
planning [15]–[17]. These works consider environments with
a fixed number of obstacles. The most related work is [18].
In [18], a variable number of obstacles are processed by a
long-short-term memory (LSTM) model and transformed into
a fixed-size hidden state. Then, the DRL framework takes
the hidden state and the robot state as input and selects an
optimal action. In detail, the states of obstacles are first sorted
according to their distances to the robot in descending order
and then fed to the LSTM model to compute the hidden state.
Hence, the closest obstacle has the biggest effect on the action
selection. However, an obstacle is more critical and should be
remembered for collision avoidance if it has a shorter collision
time to the robot, even though it is far away. Hence, the method
proposed in [18] may cause a high collision rate in crowded
environments.

In this paper, we propose a value-based DRL approach, Crit-
LSTM-DRL, to motion planning in environments having a
variable number of obstacles. Rather than sorting obstacles
according to their distances to the robot, we first propose
a metric called criticality to evaluate the importance of an
obstacle in the robot’s collision avoidance. An obstacle has
higher criticality if it has a shorter collision time to the robot.
Hence, given a set of obstacles, Crit-LSTM-DRL first predicts
their collision time and sorts them according to the collision
time in descending order. If some obstacles do not cause
collisions with the robot in the current situation, their collision
time is positive infinity. In that case, they are sorted according
to the distances to the robot. Then, the LSTM model takes
the states of the sorted obstacles as the input sequence and
generates a fixed-size hidden state. Third, Crit-LSTM-DRL
sends the hidden state and the robot state to the value network
to compute the corresponding value. Finally, Crit-LSTM-
DRL selects the action that maximizes the value function.
To evaluate the effectiveness of Crit-LSTM-DRL, we train
three models in three kinds of environments: environments
with 5 obstacles, 10 obstacles, and a variable number of
obstacles from 1 to 10. The three models are tested on test sets



containing different numbers of obstacles, varying from 1 to
14. We compare Crit-LSTM-DRL with the method proposed in
[18], which is the state-of-the-art DRL-based method to deal
with a variable number of obstacles. The simulation results
show that Crit-LSTM-DRL outperforms the existing method.
The three trained models from Crit-LSTM-DRL improve the
success rate by 4%, 20.1%, and 3.8%, and reduce the collision
rate by 35.5%, 75%, and 66.7%, respectively.

The main contributions of this paper are that (1) we propose
a new method based on the LSTM model to deal with a
variable number of obstacles, and (2) we propose a value-
based DRL model for motion planning of robots moving in
the environments with a variable number of obstacles.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this paper, we focus on the motion planning of holo-
nomic robots moving around in unknown environments with
a variable number of obstacles. However, our method can
also extend to unicycle kinematics. The robot is equipped
with different sensors, such as GPS and LiDAR, to identify
its surrounding obstacles’, i.e., position and velocity. The
motion task for the robot is to move from the initial position
p0 = (x0, y0) to the target position pg = (xg, yg) with a
prefer speed vf . Suppose the robot’s radius is r, and the time
is discretized into a set of time instants with an equal time
step ∆t. At any time instant k, k ∈ {0, 1, 2, . . .}, the state of
the robot is described as sk = (pk,vk−1,pg, vf , r) ∈ R8,
where pk = (xk, yk) is the robot’s position at k, and
vk−1 = (vxk−1, vyk−1) is the velocity in the time duration
[(k − 1)∆t, k∆t). The motion command at k is uk = vk,
i.e., the velocity in the duration [k∆t, (k + 1)∆t). Note that
for unicycle kinematics, uk = (v, θ), i.e., the speed and the
orientation, and vxk = v cos θ and vyk = v sin θ. The set of
detected obstacles at k is denoted as Ok = {o1, . . . , onk

}, and
the state of each obstacle oi is denoted as sik = (pik,v

i
k, ri),

where pik = (xik, y
i
k), vik = (vxik, vy

i
k), and ri are the position,

velocity and radius of oi at k, respectively. Note that vik can be
the current detected velocity of oi or predicted by the optimal
reciprocal collision avoidance (ORCA) method [11]. The state
sequence of the obstacles at k are denoted as s(Ok). Hence,
the motion problem for the robot can be described as:

arg min
u0,u1,...,uT−1

T (1)

s.t. pk+1 = pk + uk∆t, ∀k ∈ {0, 1, . . . , T − 1}; (2)
‖pk − pik‖ ≥ r + ri,∀oi ∈ Ok, k ∈ {0, 1, . . . , T}; (3)

p0 = p0, pT = pg. (4)

According to [17], [18], such a problem can be resolved
efficiently with the DRL framework by maximizing the value
function:

u∗k = arg max
u∈A

R(sk,Ok,u) + γ∆tvfV ∗(sk+1,u, s(Ok+1)),

V ∗(sk, s(Ok)) =

T−1∑
k′=k

γ(k′−k)∆tvfR((sk′ , s(Ok′)),u∗k′),

where A is the set of predefined actions, γ ∈ [0, 1] is a
discount factor, R(sk, s(Ok),uk) is one-step reward at sk by
taking uk, sk+1,u is the robot’s next state under the action u.
Following [18], the reward function is defined as follows:

R(sk,Ok,uk) =


1, pk+1 = pg
−0.25, dmin ≤ 0
−0.1 + 0.5dmin, 0 < dmin ≤ 0.2
0, otherwise

where dmin is the minimal distance between the robot and the
obstacles in Ok during the time duration [k∆t, (k + 1)∆t].

In this paper, we target to design a DRL-based controller
for the robot moving around in crowded and dynamic environ-
ments, which means that the dimension of s(Ok) may change
over time. Hence, our problem can be formulated as follows.
Problem: Given the initial position p0, target position pg ,
and prefer speed vf of a robot in an unknown, crowded, and
dynamic environment, design a DRL controller to control the
robot to move from p0 to pg and avoid collisions with a
variable number of obstacles in the environment.

III. CRITICALITY-GUIDED DEEP REINFORCEMENT
LEARNING

The section illustrates our criticality-guided DRL solution
for the stated motion problem. The main idea is that the
detected obstacles are first organized based on their criticality
levels and then transformed into a fixed-size state.

A. Determination of Obstacle Criticality

First, following the descriptions of [16]–[18], we transform
the states of the robot and the obstacles from the global
coordinate system to the robot-centric one. As shown in Fig. 1,
pk and pg are the current and target positions of the robot,
respectively, v is the current velocity of the robot, and pik is
the position of an obstacle oi in Ok. The transformation from
xy to xy can be described as follows:

p = M(p− pk), v = Mv,

where M =

[
cosϕ sinϕ
− sinϕ cosϕ

]
and ϕ = arctan

yg−yk
xg−xk

. Hence,

we can rewrite the states of the robot and any obstacle as sk
= (dg , vf , vxk−1, vyk−1, r)T and sik = (xik, yik, vxik, vyik, ri,
di, ri+r)T , where dg = ‖pg−pk‖2 and di = ‖pik−pk‖2. Let
s(Ok) = (s1

k, s
2
k, . . . , s

nk

k ), where oi ∈ Ok, i = 1, 2, . . . , nk.
Given the current position pik and velocity vik of obstacle oi

in the local coordinate system, and the robot’s velocity vk−1,
the determination of collision between them can be evaluated
as follows. As shown in Fig. 1, the relative velocity can be
computed as ∆vk = vk−1 − vik, and the relative position is
pik, i.e.,

−−−→
pkp

i
k. Hence, the minimal distance between the robot

and oi is:

d(pk, A) =
pik ·∆vk
‖∆vk‖2

, (5)

d2
i,min = ‖pik‖22 − d2(pk, A). (6)



x

y

x

y

pk

pg

pi
k

ϕ

vk−1

vi
k

∆vi
k

pi
k

A

r+riB

Fig. 1. Transformation of coordinate systems.

Clearly, if dmin ≤ r + ri, the robot and oi would cause a
collision if they continued their current velocities. In this case,
the computation of possible collision time, denoted as ti, can
be computed as follows.

d(A,B) =
√

(r + ri)2 − d2
i,min, (7)

ti =
d(pk, A)− d(A,B)

‖∆vk‖
. (8)

Clearly, the smaller ti is, the more dangerous and higher
priority oi is for collision avoidance. Note that when di,min >
r + ri, the robot and oi cannot cause a collision if they
continue their current velocities. Hence, at any time instant
k, the obstacles in Ok can be divided into two classes:
Oαk = {oi : di,min ≤ r+ ri} and Oβk = {oi : di,min > r+ ri}.
Definition 1. Given two obstacles oi and oj in Ok, oi has
higher criticality, denoted as c(oi) ≥ c(oj), if it satisfies one
of the following conditions: (1) oi ∈ Oαk and oj ∈ Oβk ; (2)
oi, oj ∈ Oαk and ti ≤ tj; and (3) oi, oj ∈ Oβk and di ≤ dj .
Definition 2. The sequence of obstacles {o1, o2, . . . , onk

},
oi ∈ Ok, is called a critical sequence, denoted as Ock, if it
satisfies ∀i > j, c(oi) ≥ c(oj).

At any time instant k, the critical sequence can be deter-
mined as follows. First, we divide all the detected obstacles
into Oαk and Oβk . Second, we sort the obstacles in Oβk
according to their distance to the robot in descending order,
then sort the obstacles in Oαk according to their collision
time in descending order. Finally, the two sub-sequences
are concatenated, and we can obtain the critical sequence
of the obstacles. The critical state sequence is denoted as
s(Ock) = (s1

k, s
2
k, . . . , s

nk

k ), where Ock = {o1, o2, . . . , onk
}.

B. Deep Reinforcement Learning with Criticality-LSTM

Crit-LSTM-DRL is a value-based DRL method. The main
step in Crit-LSTM-DRL is to train a value network that takes
the states of the robot and the critical obstacle sequence as
input to compute the value. The network architecture of Crit-
LSTM-DRL is shown in Fig. 2(a), where the Crit-LSTM is
an LSTM model taking s(Ock) as the input sequence (shown
in Fig. 2(b)), and MLP is a multi-layer perceptron taking the
concatenation of sk and hnk

as input.
The learning process is shown in Algorithm 1. Recall that s

and s denote the states in the global and the robot-centric
coordinate systems, respectively. First, the value network is

Crit-LSTMs(Oc
k)

s̄k
V (sk, s(Oc

k))(s̄k, hnk
) MLP

Cell
(c1, h1)

out1 outnk

s̄1k s̄nk

k

(cn−1, hn−1)
hnkCell

(a) The architecture of Crit-LSTM-DRL

(b) The unrolled crit-LSTM

Fig. 2. The network architecture of Crit-LSTM-DRL, where Oc
k is the critical

obstacle sequence.

Algorithm 1: Deep V-Learning
Input: The maximal number of episodes Nmax, the number

of replay iterations Nreplay , the action space A, the
maximal time steps for robot motion Tmax,
probability for greedy selection ε, and update
frequency for the target value network C.

Output: Value network V

1 Generate a set of trajectories via ORCA;
2 Initialize a replay memory E based on the trajectories;
3 Initialize a value network V with supervised learning based

on memory E;
4 Initialize the target value network Ṽ = V , episode = 0;
5 for episode = 1 : Nmax do
6 for ite = 1 : Nreplay do
7 Sample s0 and s(O0);
8 traj = {(s0, s(O0))}, done = False, k = 0;
9 while not done do

10 generate a random value p between [0, 1];
11 if p < ε then
12 Select uk randomly from A;
13 else
14 uk = argmax

u∈A
R(sk,Ok,u) +

γ∆tvfV (sk+1,u, s(Oc
k+1));

15 Move to the next state sk+1;
16 Detect and update the obstacles’ states s(Ok+1);
17 traj = traj ∪ {(sk+1, s(Ok+1))}, k = k + 1;
18 if k ≥ Tmax or collided or reached then
19 done = True;

20 if collided or reached then
21 for ∀(sk, s(Ok)) ∈ traj do
22 vk = Ṽ (sk, s(Oc

k));
23 update the memory E with the pair

((sk, s(Oc
k)), vk);

24 Update the network V by gradient decent with E;
25 if (episode mod C) == 0 then
26 Ṽ = V ;

27 return V .

initialized using a supervised learning process (Lines 1–3),
where the training data consists of a set of (state, value)
pairs based on a set of trajectories generated from the ORCA
method. Second, for each episode, we replay robot motion
Nreplay times and then update the replay memory E. For
each replay, we first initialize an environment (s0, s(O0)).
At each time step k, the previous value network is used



to select an action from the action space A that maximizes
the value (Line 14). Note that s(Ok+1) is predicted by
assuming that each obstacle moves at a constant velocity vik in
[k∆t, (k+1)∆t). It will also be used to compute the one-step
reward. To improve exploitation, ε-greedy policy is applied
(Line 12). The replay is terminated if the robot reaches the
destination, or a collision is detected, or the maximal motion
time is reached (Lines 18 and 19). Only when the current
replay is terminated with task achievement or collisions will
the generated trajectory be used to update the replay memory
using the (state, value) pairs. During the training process, the
value value at each state state is computed based on the target
value network Ṽ (Lines 20–23). The target value network is
updated every C episodes.

IV. EXPERIMENTAL EVALUATION

We evaluate Crit-LSTM-DRL via simulation based on the
project 1 implemented in [16]. The dimension of the hidden
state of the LSTM model is 50, and the neurons in the
MLP are (150, 100, 100, 1). The prefer speed is 1, and the
discrete action space is A = {(vi cos θj , vi sin θj) : vi =
ei/5−1
e−1 , θj = j

8π, i = 0, 1, . . . , 5, j = 0, 1, . . . , 15}. At the
training phase, the model is trained in three environments, i.e.,
environments with 5 obstacles, 10 obstacles, and a variable
number of obstacles (from 1 to 10), respectively. Each model
is trained with 10000 episodes (i.e., Nmax = 10000), and
each episode contains 100 training batches. The trained models
are denoted as Crit-LSTM-DRL-5, Crit-LSTM-DRL-10, and
Crit-LSTM-DRL-D, respectively. At the testing phase, we
repeat the testing 10 times. For each testing run, we randomly
generate 1500 test cases, dividing into five test sets equally,
i.e., the sets of test cases containing 1–4 (set1), 5 (set2), 6–9
(set3), 10 (set4), and 11–14 (set5) obstacles, respectively. We
compare our method with the LSTM-DRL method [18]. It is
also trained 10000 episodes in the same training environments,
resulting in three models: LSTM-DRL-5, LSTM-DRL-10, and
LSTM-DRL-D.

A. Evaluation of Crit-LSTM-DRL

1) Computational Performance: The computation time for
training and prediction is evaluated on a computer with an
Intel® Xeon(R) CPU E5-2697 v3. Crit-LSTM-DRL takes
26.38, 55.9, and 31.43 hours to complete 10000 training
episodes in the three training environments, respectively. The
average one-step decision-making time of the three models
trained by Crit-LSTM-DRL is 174.31, 177.06, 180.50ms,
respectively. Note that the training and prediction time relies
on the action space. The larger the action space is, the longer
the time is, as Crit-LSTM-DRL needs to query each action in
the action space and select the best one. In our experiments,
there are 80 actions, so the average query time for one action
is around 2.2ms.

1https://github.com/vita-epfl/CrowdNav

2) Simulation Results: In the sequel, to show the effec-
tiveness of Crit-LSTM-DRL, we visualize some representative
trajectories generated by different trained models with a dif-
ferent number of obstacles. Fig. 3 shows the trajectories of
five test cases generated by the three trained models, where
the numbers in the trajectories denote motion time, and each
circle denotes the robot at each second. From Fig. 3(a), we
can find that Crit-LSTM-DRL-5 performs well in the test cases
with 2, 5, and 7 obstacles, respectively, but there are violent
oscillations on the trajectories generated for the test cases
with 10 and 12 obstacles. In Fig. 3(b), Crit-LSTM-DRL-10
performs well for the test cases with 5, 7, and 10 obstacles,
respectively, and causes a few oscillations for the test case
with 12 obstacles; however, for the test case with 2 obstacles,
Crit-LSTM-DRL-10 makes a long detour. As shown in Fig.
3(c), Crit-LSTM-DRL-D generates proper trajectories for the
test cases with 2, 5, 7, and 10 obstacles, respectively, but a
trajectory with oscillations for the case with 12 obstacles.

B. Performance Comparison with LSTM-DRL

We compare the performance of Crit-LSTM-DRL with
LSTM-DRL. The metrics for comparison are the cumulative
rewards during the training phase, and the success, collision,
and timeout rates during the testing phase. Note that a motion
is a success (resp., collision) if the robot arrives at the
destination (resp., causes a collision) within the given time
budget, while a motion is a timeout if the robot does not cause
collisions or reach the destination within the time budget.

Fig. 4 shows the cumulative reward at each episode during
the training. The results show that in each environment, Crit-
LSTM-DRL outperforms LSTM-DRL. Either method obtains
the lowest cumulative rewards in the environment with 10
obstacles. It is because, with the increase of obstacles in the
environments, the robot has a higher chance of getting close to
the obstacles, resulting in a negative one-step reward. Hence,
either method obtains the lowest cumulative reward with 10
obstacles and the highest cumulative reward with 5 obstacles.

Fig. 5 shows the success/collision/timeout rate of each test
set in each testing run, and Table I gives each testing set’s
average rates of the 10 testing runs, as well as the total
average rates for each trained model. First, for Crit-LSTM-
DRL-5, it shows a higher success rate and a lower collision
rate than LSTM-DRL-5. In detail, Crit-LSTM-DRL-5 and
LSTM-DRL-5 show similar performance on the first two test
sets, but Crit-LSTM-DRL-5 shows a much higher success
rate than LSTM-DRL-5 on the third and fourth sets; both
do not perform well on the test case containing 12 obstacles.
Second, Crit-LSTM-DRL-10 also outperforms LSTM-DRL-
10: Crit-LSTM-DRL-10 can achieve 96.8% success rate and
only 0.8% collision rate on average, while the success and
collision rates are 80.6% and 3.2%, respectively. LSTM-DRL-
10 performs much better than LSTM-DRL-10 on each test
set. For example, Crit-LSTM-DRL-10 can achieve more than
90% success rate on the first set, while the success rate of
LSTM-DRL-10 is less than 50%. Third, Crit-LSTM-DRL-D
shows similar performance to LSTM-DRL-D on the first two



(a) Trajectories generated by Crit-LSTM-DRL-5. Left to Right: Test case with 2, 5, 7, 10, 12 obstacles, respectively.

(b) Trajectories generated by Crit-LSTM-DRL-10. Left to Right: Test case with 2, 5, 7, 10, 12 obstacles, respectively.

(c) Trajectories generated by Crit-LSTM-DRL-D. Left to Right: Test case with 2, 5, 7, 10, 12 obstacles, respectively.

Fig. 3. Trajectories generated by Crit-LSTM-DRL-5, Crit-LSTM-DRL-10, and Crit-LSTM-DRL-D.

Fig. 4. The curves of cumulative rewards during training.

test sets and performs much better (i.e., higher success rate,
lower collision rate, and lower timeout rates) on the rest three
test sets. In conclusion, compared with LSTM-DRL-5, Crit-
LSTM-DRL-5 improves the total average success rate by 4%
((0.896 − 0.862)/0.862), and reduces the collision rate by
35.5% ((0.124− 0.08)/0.124); Crit-LSTM-DRL-10 and Crit-
LSTM-DRL-D improve the success rate by 20.1% and 3.8%,
respectively, and reduce the collision rate by 75% and 66.7%,
respectively. Hence, Crit-LSTM-DRL significantly improves

the performance, e.g., increasing success rate and reducing
collision rate, of LSTM-DRL.

In the sequel, we compare the performance of the three
models of Crit-LSTM-DRL. Crit-LSTM-DRL-5 only performs
well in the first two sets, and the performance degrades when
the number of obstacles increases, limiting its application
in crowded environments. Crit-LSTM-DRL-10 shows good
performance in all testing sets except set1, in which Crit-
LSTM-DRL-10 achieves a low success rate and a high timeout
rate. It is because Crit-LSTM-DRL-10 is trained in a crowded
environment, and the reward function is too sparse to inspire
the robot to move to the destination. Crit-LSTM-DRL-D
achieves a high success rate in the first four test sets, where
the range of the number of obstacles is the same as that in
the training environments, and has a little downgrade in the
environments whose number of obstacles exceeds the training
one. Hence, if the maximal number of obstacles in different
applications can be determined, Crit-LSTM-DRL is preferred
to be trained in environments with a variable number of
obstacles. Otherwise, we may want to train two Crit-LSTM-
DRL models: one is trained with a fixed number of obstacles
and the other is trained with a variable number of obstacles,
and make decisions between them based on the detected
number of obstacles.



(a) Success rate. (b) Collision rate (c) Timeout rate.

Fig. 5. Performance of models trained in different environments for each test run.

TABLE I
AVERAGE RATES IN 10 RUNS (Success/Collision/T imeout)

Models Total Average Rates Average Rates in Different Test Sets
1-4 (set1) 5 (set2) 6-9 (set3) 10 (set4) 11-14 (set5)

Crit-LSTM-RL-5 0.896/0.080/0.024 0.97/0.00/0.03 0.99/0.00/0.00 0.97/0.03/0.01 0.88/0.10/0.02 0.67/0.27/0.06
Crit-LSTM-RL-10 0.968/0.008/0.026 0.90/0.00/0.10 1.00/0.00/0.00 0.99/0.01/0.00 0.98/0.01/0.00 0.97/0.02/0.02
Crit-LSTM-RL-D 0.978/0.014/0.008 1.00/0.00/0.00 1.00/0.00/0.00 0.99/0.01/0.00 0.97/0.02/0.01 0.93/0.04/0.03

LSTM-RL-5 0.862/0.124/0.014 0.98/0.00/0.02 0.99/0.01/0.00 0.90/0.09/0.01 0.78/0.20/0.02 0.66/0.32/0.02
LSTM-RL-10 0.806/0.032/0.162 0.45/0.00/0.55 0.85/0.00/0.15 0.93/0.02/0.05 0.93/0.04/0.03 0.87/0.10/0.03
LSTM-RL-D 0.942/0.042/0.016 0.99/0.00/0.01 0.99/0.01/0.00 0.96/0.03/0.01 0.92/0.07/0.01 0.85/0.10/0.05

V. CONCLUSION

In this paper, we propose a learning-based approach, Crit-
LSTM-DRL, to real-time motion planning for a robot moving
in dynamic environments. It combines an LSTM model and a
value-based DRL model. At any time step, the LSTM model
transforms the varying-size obstacle vector into a fixed-size
one according to the obstacles’ criticality. Then, the DRL
model selects an optimal action to maximize the value. We
compare Crit-LSTM-DRL with LSTM-DRL. The simulation
results show that Crit-LSTM-DRL can improve the success
rate and reduce the collision rate significantly.

In the future, we will evaluate our method on a real-world
robot platform and design new reward functions to reduce
the timeout rate. Another interesting topic is investigating
the combination of learning-based methods and conventional
planning methods to guarantee both safety and efficiency.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science
Foundation of China under Grant 61973242, the Major Funda-
mental Research Program of the Natural Science Foundation
of Shaanxi Province under Grant No. 2017ZDJC-34, and
Singapore MOE Academic Research Fund Tier 2 grant (MOE-
T2EP20120-0004).

REFERENCES

[1] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: A
review of the state-of-the-art,” Cooper. Robots Sensor Netw., pp. 31–51,
2015.

[2] J. Luo, H. Ni, and M. Zhou, “Control program design for automated
guided vehicle systems via petri nets,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 45, no. 1, pp. 44–55, 2014.

[3] Y. Zhou, H. Hu, Y. Liu, and Z. Ding, “Collision and deadlock avoidance
in multirobot systems: A distributed approach,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 47, no. 7, pp. 1712–1726, 2017.

[4] Y. Zhou, H. Hu, Y. Liu, S.-W. Lin, and Z. Ding, “A distributed method
to avoid higher-order deadlocks in multi-robot systems,” Automatica,
vol. 112, pp. 108 706:1 – 108 706:13, 2020.

[5] J. P. Van Den Berg and M. H. Overmars, “Roadmap-based motion
planning in dynamic environments,” IEEE Trans. Robot.,, vol. 21, no. 5,
pp. 885–897, 2005.

[6] J. D. Marble and K. E. Bekris, “Asymptotically near-optimal planning
with probabilistic roadmap spanners,” IEEE Trans. Robot., vol. 29, no. 2,
pp. 432–444, 2013.

[7] M. Kloetzer, C. Mahulea, and R. Gonzalez, “Optimizing cell decompo-
sition path planning for mobile robots using different metrics,” in Proc.
Int. Conf. Syst. Theory Control Comput., 2015, pp. 565–570.

[8] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” J. Field Robot., vol. 26,
no. 3, pp. 308–333, 2009.

[9] A. Bircher, K. Alexis, U. Schwesinger, S. Omari, M. Burri, and
R. Siegwart, “An incremental sampling-based approach to inspection
planning: The rapidly exploring random tree of trees,” Robotica, vol. 35,
no. 6, pp. 1327–1340, 2017.

[10] H. G. Tanner and A. Boddu, “Multiagent navigation functions revisited,”
IEEE Trans. Robot., vol. 28, no. 6, pp. 1346–1359, 2012.

[11] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Robotics research, 2011, pp. 3–19.

[12] J. Alonso-Mora, P. Beardsley, and R. Siegwart, “Cooperative collision
avoidance for nonholonomic robots,” IEEE Trans. Robot., vol. 34, no. 2,
pp. 404–420, 2018.

[13] P. Abichandani, G. Ford, H. Y. Benson, and M. Kam, “Mathematical
programming for multi-vehicle motion planning problems,” in IEEE Int.
Conf. Robot. Autom., 2012, pp. 3315–3322.

[14] Y. Zhou, H. Hu, Y. Liu, S.-W. Lin, and Z. Ding, “A real-time and fully
distributed approach to motion planning for multirobot systems,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 49, no. 12, pp. 2636–2650, 2017.

[15] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2017, pp. 1343–1350.

[16] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforcement
learning,” in 2019 IEEE Int. Conf. Robot. Autom., 2019, pp. 6015–6022.

[17] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in 2017 IEEE Int. Conf. Robot. Autom., 2017, pp. 285–292.

[18] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic,
decision-making agents with deep reinforcement learning,” in IEEE/RSJ
Int.l Conf. Intell. Robot. Syst., 2018, pp. 3052–3059.


