
This document is downloaded from DR-NTU, Nanyang Technological

University Library, Singapore.

Title Distributed approaches to motion planning and control in
multi-robot systems

Author(s) Zhou, Yuan

Citation
Zhou, Y. (2019). Distributed approaches to motion
planning and control in multi-robot systems. Doctoral
thesis, Nanyang Technological University, Singapore.

Date 2019-05-14

URL http://hdl.handle.net/10220/48184

Rights

DISTRIBUTED APPROACHES TO MOTION

PLANNING AND CONTROL IN MULTI-ROBOT

SYSTEMS

YUAN ZHOU

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

2019

DISTRIBUTED APPROACHES TO MOTION

PLANNING AND CONTROL IN MULTI-ROBOT

SYSTEMS

YUAN ZHOU

School of Computer Science and Engineering

A thesis submitted to the Nanyang Technological University
in partial fulfillment of the requirement for the degree of

Doctor of Philosophy

2019

Statement of Originality

I hereby certify that the work embodied in this thesis is the result of original research,

is free of plagiarised materials, and has not been submitted for a higher degree to any

other University or Institution.

12 April 2019

. .

Date Yuan Zhou

Supervisor Declaration Statement

I have reviewed the content and presentation style of this thesis and declare it is free

of plagiarism and of sufficient grammatical clarity to be examined. To the best of my

knowledge, the research and writing are those of the candidate except as acknowledged

in the Author Attribution Statement. I confirm that the investigations were conducted

in accord with the ethics policies and integrity standards of Nanyang Technological

University and that the research data are presented honestly and without prejudice.

15 April 2019

. .

Date Shang-Wei Lin

Authorship Attribution Statement

This thesis contains materials from 3 papers published in the following peer-reviewed

journals for which I am the first author.

Chapter 4 is published as Yuan Zhou, Hesuan Hu, Yang Liu, Shang-Wei Lin, Zuohua

Ding, “A real-time and fully distributed approach to motion planning for multirobot

systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, Oct. 2017.

http://ieeexplore.ieee.org/document/8055437/. DOI: 10.1109/TSM-

C.2017.2750911

The contributions of the co-authors are as follows:

• I was the lead author. I wrote the manuscript drafts and conducted all experiments.

• Prof Hu guided the initial research direction and revised the manuscript drafts.

• I co-designed the methodology with Prof Hu.

• Profs Liu, Lin, and Ding discussed and supported the research, and revised the

drafts.

Chapters 6 is published as Yuan Zhou, Hesuan Hu, Yang Liu, and Zuohua Ding, “Col-

lision and deadlock avoidance in multirobot systems: A distributed approach,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1712–

1726, Jul. 2017. DOI: 10.1109/TSMC.2017.2670643

The contributions of the co-authors are as follows:

• I was the lead author. I wrote the manuscript drafts and conducted all experiments.

• Prof Hu guided the initial research direction and revised the manuscript drafts.

http://ieeexplore.ieee.org/document/8055437/

• I co-designed the methodology with Prof Hu.

• Profs Liu, Lin, and Ding discussed and supported the research, and revised the

drafts.

Chapter 8 is published as Yuan Zhou, Hesuan Hu, Yang Liu, Shang-Wei Lin, and Zuo-

hua Ding, “A distributed approach to robust control of multi-robot systems,” Automati-

ca, vol. 98, pp. 1–13, Dec. 2018. DOI: 10.1016/j.automatica.2018.08.022

The contributions of the co-authors are as follows:

• I was the lead author. I wrote the manuscript drafts and conducted all experiments.

• Prof Hu guided the initial research direction and revised the manuscript drafts.

• I co-designed the methodology with Prof Hu.

• Profs Liu, Lin, and Ding discussed and supported the research, and revised the

drafts.

12 April 2019

. .

Date Yuan Zhou

Acknowledgements

As time flies, it is near the end of my PhD study. Though the PhD life fulfills pain and

happiness, I gain a lot from the study: knowledge, skills, love, friendship, etc. No words

can fully express myself, and all I can say is thank you, thank you very much.

First, I would like to extend my sincere gratitude to my supervisors Profs. Lin

Shang-Wei, Liu Yang, and Hu Hesuan for their valuable guidance and advice. Their

profound knowledge, rich experience, and sagacious perception encourage me to focus

on the right research field. Their detailed guidance helps me to improve my skills for

thinking and writing greatly. Their invaluable support throughout these years has really

helped me to conduct my research. Without them, I cannot finish my study or this thesis.

Second, I would like to extend my grateful thanks to Prof. Ding Zuohua, who is the

enlightenment teacher of my academic career. He always gives me his suggestions and

encouragement on both research and life.

Third, I would like to thank my friends and colleague in cyber security lab (CSL)

for their help in both my life and study, especially Dr Chen Bihuan, Dr Meng Guozhu,

Dr Wang Haijun, Dr Xie Xiaofei, Dr Xue Yinxing, Cheng Kun, Chen Hongxu, Du

Xiaoning, Feng Ruitao, Li Yuekang, Tang Yun, Wang Junjie, Xu Zhengzi, and so on. I

also thank our laboratory executive Tan SuanHai for his kind help to buy and setup the

hardware of UAVs, as well as provide IT support.

Last but the most important, I would like to express my utmost appreciation to my

family: my parents, my wife, and my elder sisters. I’m heavily indebted to them for

their unconditional support to my study. Without their support and sacrifice, I also

cannot finish my study.

Contents

Contents vi

List of Figures ix

List of Tables xii

Summary xiii

1 Introduction 1
1.1 Motivations and Challenges . 2
1.2 Main Work . 5
1.3 Contributions of the Thesis . 9
1.4 List of Materials Related to the Thesis 10
1.5 Outline of the Thesis . 10

2 Related Work 12
2.1 Motion Planning . 12
2.2 Deadlock Avoidance . 19
2.3 Robust Motion . 23

3 Preliminaries 25
3.1 Multi-Robot Systems . 25
3.2 Labeled Transition Systems . 27
3.3 Model Predictive Control . 28
3.4 Sequential Convex Programming . 29

4 Fully Distributed Approach to Trajectory Planning for Multi-Robot Sys-
tems 31
4.1 Introduction . 31
4.2 Problem Statement . 34
4.3 Formal Modeling for the Problem . 36

4.3.1 Problem Analysis . 36
4.3.2 Construction of Distributed Optimization Programming 38
4.3.3 Distributivity Analysis . 44

4.4 Real-Time Trajectory Planning Algorithm 46
4.4.1 Convexification of the Non-Convex Constraints 47

vi

Contents vii

4.4.2 The Distributed Algorithm to Trajectory Planning 50
4.5 Simulated Cases: Implementation and Results 53

4.5.1 Case 1: One Robot in a Multi-Obstacle Environment 54
4.5.2 Case 2: Multiple Robots in an Obstacle-Free Environment . . . 57
4.5.3 Case 3: Multiple Robots with Symmetric Trajectories 59

4.6 Discussion . 60
4.7 Conclusion . 61

5 Discrete Modeling of Robot Motion in Multi-Robot Systems with Fixed
Paths 62
5.1 Introduction . 62
5.2 Determination of Collision Segments 64
5.3 Abstraction of Discrete States . 67
5.4 Labeled Transition Systems Modeling 69
5.5 Discussion and Conclusion . 72

6 Distributed Approach to Collision and Deadlock Avoidance in Multi-Robot
Systems 74
6.1 Introduction . 74
6.2 Problem Statement . 76
6.3 Collision avoidance . 77
6.4 Deadlock Avoidance . 79

6.4.1 Deadlock Avoidance Algorithm 80
6.4.2 Performance Analysis of the Algorithm 86

6.5 Simulation Implementation and Results 89
6.5.1 Simulation Case and Results 89
6.5.2 Simulation Results on of a Practical Scenario 95

6.6 Discussion . 96
6.7 Conclusions . 98

7 Distributed Approach to Higher-Order Deadlock Avoidance in Multi-Robot
Systems 99
7.1 Introduction . 99
7.2 Problem Statement . 101
7.3 Higher-Order Deadlocks and Their Avoidance 102
7.4 Distributive Analysis . 117
7.5 Simulation Cases . 120

7.5.1 Simulation Without Higher-Order Deadlock Avoidance Algorithm121
7.5.2 Simulation Under the Control of the Higher-Order Deadlock

Avoidance Algorithm . 122
7.5.3 Simulation on an Application Scenario in a Warehouse 124

7.6 Discussion . 125
7.7 Conclusion . 127

8 Distributed Approach to Robust Control for Multi-Robot Systems 128

Contents viii

8.1 Introduction . 129
8.2 Problem Statement . 130
8.3 Robust Control . 131

8.3.1 Robust Control Algorithms . 132
8.3.2 Effectiveness Analysis . 136
8.3.3 Distributivity and Complexity Analysis 140

8.4 Simulation Cases . 143
8.4.1 Robot Motion without Robustness Algorithms 144
8.4.2 Robot Motion with Robustness Algorithms 145
8.4.3 Simulation Results on a Real Scenario 147

8.5 Conclusion and Discussion . 147

9 Hybrid Approach to Distributed Motion Control for Multi-Robot Systems 149
9.1 Introduction . 149
9.2 Problem Statement . 151
9.3 Hybrid Approach to Motion Control 152

9.3.1 Discrete Transition Control . 154
9.3.2 Continuous Speed Adjustment 159
9.3.3 Effectiveness Analysis of the Proposed Approach 168

9.4 Modeling of Communication Protocols in the Proposed Approach . . . 170
9.5 Simulation Cases . 177

9.5.1 Simulation Results under the Proposed Hybrid Approach 177
9.5.2 Comparison of Our Approach with Discrete Control 179
9.5.3 A More Complex Scenario . 182

9.6 Conclusion . 183

10 Conclusion and Future Research 185
10.1 Summary . 185
10.2 Future Work . 187

A List of Publications 190

Bibliography 192

List of Figures

1.1 Statistic data of worldwide annual supply of industrial and service robots 2
1.2 Motion requirements and applied technologies 5
1.3 Research contribution of the thesis . 6

3.1 An example of LTS . 28
3.2 General process for MPC-based control methods 29

4.1 A robot checks local environment with a limited sensing range 37
4.2 Collision avoidance with different shapes of static obstacles 41
4.3 Illustration of collision avoidance with rj at the current time k0 42
4.4 Comparison of c-obstacles built by our work and by Minkowski sum in

2D space . 43
4.5 Distributed trajectory planning framework for a multi-robot system . . . 45
4.6 Construction of the convex collision-free region for position xi[k] . . . 48
4.7 Convexification of the polyhedral collision constraints 49
4.8 Convexification of a new added kind of collision avoidance constraints . 50
4.9 The minimum distance between a robot and an obstacle in [k, k + 1] . . 53
4.10 Environment of Case 1 in the experiments 54
4.11 The generated path . 56
4.12 Predicted optimal trajectory on different prediction horizon 57
4.13 A simulation multi-robot system with 4 robots 58
4.14 The paths traversed by the four robots 58
4.15 Illustrative examples for livelock avoidance 59
4.16 The generated paths without any livelock 60

5.1 An example to show safe regions of robots in 2D motion space 65
5.2 An example to illustrate the maximal continuous segments 65
5.3 An example to show collisions among multiple robots 66
5.4 An example to show the detection of collision segments by a robot . . . 67
5.5 An example to show discretization of a path 68
5.6 A part of the LTS model of a multi-robot system containing three robots 72
5.7 Decomposition of a path with multiple circuits 73

6.1 A deadlock among 4 vehicles at an intersection 75
6.2 Petri net description of collision avoidance between two robots 78
6.3 A situation that causes a deadlock among four robots 80
6.4 Two kinds of cycles in the directed graph of a multi-robot system 82

ix

List of Figures x

6.5 k robots in a deadlock cycle . 82
6.6 An example to show communications among robots for deadlock detec-

tion . 88
6.7 Paths of four robots in our simulation 89
6.8 A deadlock occurs in Case 2 under the control of the collision avoidance

algorithm . 91
6.9 Six snapshots of the simulation under control of deadlock avoidance

algorithm . 91
6.10 Deadlocks in extended systems from 4 robots to 25 robots 92
6.11 The numbers of deadlocks that may occur in systems with different robots 93
6.12 Two simulation configurations of n robots 94
6.13 Average computation time for either configuration with different num-

bers of robots . 94
6.14 An intersection in NTU campus and its diagrammatic drawing 95
6.15 Four vehicles arrive at the intersection 96
6.16 Four vehicles are in a deadlock . 96
6.17 An intermediate configuration with collision zone abstraction 96
6.18 Three snapshots of the motion under the control of our proposed algorithm 96
6.19 Comparison of different discrete abstractions 97

7.1 An example of higher-order deadlocks 102
7.2 A configuration containing three circuits 104
7.3 The sub-circuitW ′3 ofW3 given in Fig. 7.2 105
7.4 An example of a live circuit with 10 robots 108
7.5 A general LTS model during the proof of Lemma 2 109
7.6 Examples to illustrate the proof of Lemma 2 110
7.7 An example of an (m− 3)-th order deadlock containing m robots . . . 110
7.8 A system with four robots that are traversing a collision region 118
7.9 The communication of r1 with other robots for the deadlock checking

process . 118
7.10 An example of the control architecture of a multi-robot system under

our approach . 120
7.11 A case study with 8 robots . 121
7.12 The relation between the numbers of total rounds and average live round-

s with random motion . 122
7.13 Time estimation for higher-order prediction 122
7.14 Some snapshots during the evolution of the simulation system 123
7.15 A simulation scenario in a warehouse 125
7.16 Simulation results of the warehouse scenario 126
7.17 Example for the comparison of different methods 126

8.1 An example illustrating robot blocking and blocked robots 131
8.2 An example to show critical states and critical pairs 132
8.3 An example of local signal retrieval and maintenance for robust control 141
8.4 The system for our simulation . 143

List of Figures xi

8.5 System evolution without robust control algorithm 145
8.6 System evolution under robust control algorithm 146
8.7 Simulation results of the real scenario 148

9.1 Framework of the proposed hybrid motion control approach 153
9.2 An example to illustrate the negotiation process 157
9.3 An illustration of notations related to discrete state and continuous path 159
9.4 An illustration of enable-dependent robots and their retrieval 162
9.5 An illustration of pure pursuit algorithm 168
9.6 Communication model of an intermediate robot involved in Dect(ri, s) 172
9.7 Communication protocol for the deadlock detection procedureDect(ri, s)172
9.8 Communication model of an intermediate robot involved in ri’s proce-

dure to retrieve its waiting-for robots 174
9.9 Communication protocol of ri for its procedure to retrieve waiting-for

robots . 175
9.10 Communication architecture of robot ri 176
9.11 Paths of four robots and the corresponding transition system 178
9.12 Acceleration of the four robots in the simulation 179
9.13 Speed of the four robots in the simulation 180
9.14 Distances of the four robots in the simulation 180
9.15 Simulation results with only discrete control 181
9.16 A more complex simulation example 182
9.17 Speed evolution of the robots . 183
9.18 State transitions of the robots . 184

List of Tables

2.1 Summary of Different Motion Planning Algorithms 19
2.2 Summary of Different Strategies for Deadlock Resolution 23

4.1 Summarization of Symbols in This Chapter 35
4.2 Obstacle Positions in the Environment 55
4.3 Obstacles that Are Detected at Different Time Instants 55

6.1 Discrete Points of the Four Paths . 90
6.2 Parameter Values of Collision Points on Each Path 90
6.3 The Numbers of Robots and Different Deadlocks That May Occur . . . 93
6.4 Comparison of the Length of the Maximal Event Sequence Leading a

Robot to Move 2 Rounds . 98

7.1 The Numbers of Simulation Rounds and Corresponding Average Live
Rounds with Random Motion . 122

9.1 Messages for Communication Among Robots 171

xii

Summary

A multi-robot system is a system containing multiple robots which are moving

around a given environment to accomplish tasks cooperatively. Motion planning and

control is one of the most important issues in multi-robot systems. On one hand, as an

individual, a robot is expected to make collision-free motion under its own controller;

on the other hand, as a whole system, a robot is expected to move cooperatively with

others. Hence, in this thesis, we focus on distributed approaches to motion planning

and control, which not only guarantee flexibility and scalability of the systems, but also

allow negotiation among robots.

First of all, based on the kinematic equations of robots, we focus on distributed tra-

jectory planning for multi-robot systems operating in an unstructured environment. We

propose a fully distributed approach to planning trajectories, which means that a robot

can compute its trajectory and perform its motion in a distributed way. It combines mod-

el predictive control (MPC) strategy and incremental sequential convex programming

(iSCP) method. On each prediction horizon, a robot builds a non-convex programming

by communicating with its neighbors to retrieve their current states. Based on the re-

trieved information, the robot predicts its neighbors’ future positions by itself, so it does

not need to wait for information predicted by other robots. Each robot solves its own

local problem independently via the iSCP method. Once the computation is finished,

the robot can move independently. Hence, the proposed method is fully distributed.

Second, with the paths generated from path/trajectory planning, we study a dis-

tributed approach to collision and deadlock avoidance in multi-robot systems where

each robot has a predetermined path. We propose a real-time and distributed algorith-

m for collision and deadlock avoidance by repeatedly stopping and resuming robots.

The motion of each robot is first modeled as a labeled transition system (LTS) and then

controlled by a distributed algorithm to avoid collisions and deadlocks. Each robot can

xiii

Summary xiv

execute its local algorithm by checking whether its succeeding state is occupied and

whether the one-step move can cause deadlocks. Performance analysis of the proposed

algorithm is also conducted. The conclusion is that the algorithm is not only practically

operative but also maximally permissive in terms of the LTS models.

Third, aiming at some more complex path networks, we further study a distributed

approach to avoiding higher-order deadlocks, from which a system leads to a deadlock

inevitably. Based on the LTS models of robots, we conclude that there exist at most the

(N−3)-th order deadlocks withN robots. This means that deadlocks, if any, will occur

unavoidably within N − 3 steps of corresponding transitions. A distributed algorithm

is then proposed to avoid higher-order deadlocks. To execute its local algorithm, a

robot, on one hand, needs to look ahead at most N − 1 states, i.e., N − 3 intermediate

states and two endpoint states, to check the status of these states; on the other hand,

it needs to communicate with others via a multi-hop communication path to determine

whether there are any circuits. By analyzing the returned circuits independently, the

robot can determine whether there exist higher-order deadlocks. Theoretical analysis

and experimental study show that the proposed algorithm is practically operative.

Fourth, considering the factor that there may exist robot failures in a system, we

in the sequel study robust control for a multi-robot system. We classify robots into

reliable and unreliable ones and assume reliable robots can always work well and un-

reliable ones may fail unpredictably. The objective of our robust control is to minimize

the adverse effect of a failed robot on the whole system. During the path/trajectory

planning phase, robust control can be done easily by regarding the failed robots as static

obstacles. So we focus on systems with fixed paths. Based on the LTS models, we pro-

pose two distributed robust control algorithms: one for reliable robots and the other for

unreliable ones. The algorithms guarantee that wherever an unreliable robot fails, only

the robots are blocked whose state spaces contain the failed state. Theoretical analysis

shows that the proposed algorithms are practically operative. Simulation results show

the effectiveness of our algorithms.

Finally, to generate continuous inputs directly during deadlock avoidance, we con-

centrate on a distributed and hybrid approach, combining both continuous and discrete

technologies studied before, to motion control for multi-robot systems where each robot

Summary xv

has a fixed path. Based on MPC strategy, on each horizon, the discrete control part de-

termines a proper waiting decision based on the discrete models to avoid collisions and

deadlocks; then the continuous part computes proper continuous inputs by constructing

and resolving a local optimization problem, which includes the constraint of waiting

time. The advantages of the proposed hybrid approach are that: discrete control can

deal with deadlocks and reduce the scale of optimization problem; continuous control

can general optimal speed satisfying the discrete decision. In the proposed approach,

to move in a fully distributed way, each robot needs to communicate with its neighbors

to retrieve their current states, which can be obtained immediately. The communication

protocols are described in Petri nets, and the communication network can be reconfig-

ured in real time based on the connectivity among robots.

Chapter 1

Introduction

Since the development of the first mobile and intelligent robot Shakey between 1966

and 1972, mobile robots become increasingly popular and have applications in different

areas, such as environment monitoring [1], search and rescue [2], reconnaissance and

surveillance missions [3], demining [4], and domestic service [5]. On one hand, robots

can help people do labor-consuming tasks. This can liberate us from heavy manual labor

so that we can do some more creative tasks. For example, robots can help people com-

plete assemble parts, clean houses, and mow lawns. On the other hand, mobile robots

can help to do the dangerous tasks or the tasks that people cannot complete currently,

such as search and rescue, humanitarian demining, underwater exploration, and space

exploration. In the past years, the number of robots deployed in industries and our daily

life is increasing considerably and impressively. As reported by the International Fed-

eration of Robotics (IFR) in 2018, the amount of annual worldwide supply of industrial

and service robots reaches a new peak due to the rapid growth in 2017: industrial robot

sales increased by 30% to 381,335 units, the number of professional service robots sold

rose by 85% to 109,543 units, and that for personal and domestic use increased by 25%

to about 8.5 million units. Based on their prediction, the estimated annual worldwide

supply of industrial robots will be 421, 484, 553, and 630 thousand units in years 2018

− 2021, respectively; the estimated worldwide supplies of professional and personal

robots in 2018 are 162.9 thousand units and 2.5 million units, respectively, while their

cumulative numbers from 2019 to 2021 are 721.9 thousand units and 13.1 million units,

1

Chapter 1. Introduction 2

Year (* forecast)
2016 2017 2018* 2019* 2020* 2021*

th
ou

sa
nd

 u
ni

ts

0

100

200

300

400

500

600

700

294

381
421

484

553

630

(a) Industrial robots.

Applications of Professional Use
Logistic Defence Field Other

th
ou

sa
nd

 u
ni

ts

0

50

100

150

200

250

300

350

400

450

500

550

485.3

 43.7

 93.4 99.5
114.8

 12.5 15.9 19.7

 69

 12 10.4 16.326.3
11.1 6.7 13.9

Professional Robots

2019*-2021* (forcase)
2018
2017
2016

Applications of Personal Use
Household Entertainment and Leisure

th
ou

sa
nd

 u
ni

ts

0

2000

4000

6000

8000

10000

12000
11100

 20002000

 500

1600

 400

1200

 400

Personal Robots

2019*-2021*(forecast)
2018
2017
2016

(b) Service robots.

FIG. 1.1: Statistic data of worldwide annual supply of industrial and service robots.
(a) Worldwide supply of industrial robots in different years. (b) Worldwide supply of

service robots with different applications.

respectively. Fig. 1.1 shows the numbers of industrial and service robots that are sup-

plied in 2016 and 2017, and the predictions from 2018 to 2021. The data are from the

report given by IFR [6].

1.1 Motivations and Challenges

Even though the last few decades witness the rapid development in robotics, the appli-

cability of autonomous robots, like unmanned ground vehicles (UGVs) and unmanned

aerial vehicles (UAVs), is still limited in our daily life due to the lack of everlasting

safety guarantees during their motion in complex environments. What’s more, most of

the current applications are single-robot systems, i.e., each task is completed by only

one robot. With the development of technologies and society, people are facing more

and more complicated tasks. Thus, a single robot cannot finish these tasks efficiently.

This arouses our study on motion planning and control for multi-robot systems.

A multi-robot system is a system containing multiple mobile robots that work to-

gether to complete sophisticated tasks by moving around in a given environment. The

main characteristic of a multi-robot system is the cooperation among robots. Compared

with their single-robot counterparts, multi-robot systems become increasingly popular

thanks to their great benefits [7, 8], such as:

• Wide coverage and diverse functionality. Robots in a multi-robot system can be de-

ployed in a wide region. Thus, the system can cover large space, do different tasks,

and collect different data through the physically distributed sensors and actuators.

Chapter 1. Introduction 3

• High reliability and good flexibility. With multiple robots in it, a system has some

redundancy. When a robot is failed, others may still cooperate to finish the tasks.

With the cooperation of multiple robots, the design of each robot can be simple.

Hence, the design of a multi-robot system can be more flexible.

• High performance. By decomposing a complicated task into a set of simple subtasks,

which can be finished by each robot, a multi-robot system can fulfill complicated

tasks and improve system performance.

All the above aspects attract our attention to multi-robot systems. Motion planning

and control is one of the most critical and important issues in multi-robot systems and

has been given wide consideration in both academia and industry. However, it is not a

straightforward task due to the following challenges.

1. The general motion planning problems are hard to solve. Some theoretical research

work has characterized the complexity of motion planning problems. Reif [9] first

showed that the generalized mover’s problem, i.e, finding a collision-free path for a

rigid body, which may consist of multiple polyhedra, such that it can move from an

initial position to a target position in a Euclidean space with polyhedral obstacles, is

PSPACE-hard in 3-D space. Hopcroft et al [10] further showed that even for a sim-

plified 2-D case, the coordinated motion planning problem is PSPACE-hard, which

can be described as: given a set of disjoint rectangular objects and their initial and

final positions in a 2-D rectangular box, plan a continuous coordinated motion such

that each object can move from its initial position to the final one without causing

collisions with the box and others. Besides, Reif and Sharir [11] showed that solving

motion problems in dynamic environments is much harder than in static environment

in terms of computational complexity. Thus, there is no efficient algorithm to solve

general motion planning problems. This directs researchers to identify special cases

or to find more practical approximate methods.

2. Dynamic and complex environments require real-time motion planning. Since there

are multiple robots moving in the same environment, it introduces new challenges to

control robot motion. On one hand, as usual, a robot needs to avoid collisions with

environmental obstacles, such as people, houses, walls, chairs, and desks. Usually,

Chapter 1. Introduction 4

the environment is unstructured, and the obstacles are with arbitrary shapes. On the

other hand, a robot needs to avoid collisions with other robots. To guarantee its

motion independence so as to leverage the advantages of multi-robot systems, each

robot has an individual controller and regards other robots as dynamic obstacles. In

a changing environment, a robot needs to plan its motion in real time.

3. Flexibility and cooperation require distributed control. In a multi-robot system, as

an individual, each robot is preferred to move somehow independently so as to keep

flexibility; while as a whole, a robot is required to keep consistence with others to

finish cooperative motion. Usually, the control of a multi-robot system admits cen-

tralized, decentralized, or distributed architecture. A centralized controller guides

the motion of all robots simultaneously with the highest performance; however, cen-

tralized control usually lacks of flexibility and robustness. Decentralized control

allows a robot to have its individual local controller, which can guarantee flexibility

of the system, but it is hard for cooperation since there is no communication among

robots. In distributed control, each robot has an individual local controller and dif-

ferent controllers can communicate with each other. Hence, to achieve cooperation

among robots and guarantee flexibility of the system, distributed approaches are re-

quired to control robot motion in multi-robot systems.

4. Deadlocks may occur during distributed motion. Since robots move in a distributed

manner, deadlocks may occur during the evolution of a multi-robot system. More-

over, in some cases, e.g., robots are required to move along predefined paths with

multiple successive intersections, deadlocks are hard to predict since even though

the system is deadlock-free currently, it will lead to a deadlock inevitably. Hence,

efficient methods for deadlock prediction and avoidance are necessary and indis-

pensable.

5. Robot failures may occur to stagnate the whole system. In a multi-robot system,

some robots may fail unexpectedly during their motion. A failed robot may block

the motion of the normal ones, even though some blockage can be avoided. Thus, a

well-designed motion control algorithm should be robust against robot failures, i.e.,

minimize the number of robots that are blocked.

Chapter 1. Introduction 5

Collision Avoidance

Deadlock Avoidance

Robust Control

Performance

Discrete Event Systems

Mathematical Programming

()

()
()

0min
. .

0, 1, ,

0, 1, ,
i

i

f x
s t

f x i m

h x i k

£ =

= =

Discrete Event Systems

Mathematical Programming

()

()
()

0min
. .

0, 1, ,

0, 1, ,
i

i

f x
s t

f x i m

h x i k

£ =

= =

mm,,

,,kk,,

Motion Targets

Applied Technologies

C
o

m
p

u
lso

ry

Optional

Model Predictive Control

FIG. 1.2: Motion requirements and applied technologies.

1.2 Main Work

Facing the above motivations and challenges, we focus on distributed approaches to

motion planning and control of multi-robot systems, and this thesis would like to an-

swer the following questions: (1) how can each robot in a multi-robot system, which is

deployed in an unstructured environment, plan its trajectory in a distributed way? (2)

after each robot obtains its path from trajectory/path planning, how can it move along a

given path in a distributed manner, avoiding collisions and deadlocks? (3) how can the

motion of a robot be robust against robot failures in the system?

Generally, as shown in Fig. 1.2, the requirements for the motion of a robot con-

tain collision avoidance, deadlock avoidance, robustness, and performance optimiza-

tion. The first and fundamental level is collision avoidance. This is the most important

and common requirement for safe motion of a robot. A collision not only affects the

completion of motion tasks but also collapses robots. The second level is deadlock

avoidance. Deadlocks may occur during collision avoidance and stop the motion of

robots. A deadlock will degrade the performance of the system and make some mo-

tion tasks impossible, but all robots can still perform well once deadlocks are resolved.

The third level is robust control. This is required only when there are robot failures.

When a robot fails, it may block the motion of some robots, which may in turn block

others. Hence, for robust control, we would like to minimize the detrimental effects of

robot failures on others. All these three levels focus on the functionality of a system

to finish its assigned motion tasks and should be always satisfied. These are the basic

three levels, i.e., behavior implementation, and they are compulsory. When a robot can

Chapter 1. Introduction 6

Distributed Trajectory Planning

Real-Time and Fully Distributed Trajectory Planning

in Unstructured Environment

 (Chapter 4)

Distributed Motion Control with Fixed Paths

Distributed approach to collision

and deadlock avoidance

(Chapter 6)

Distributed approach to higher-order

deadlock avoidance

(Chapter 7)

Distributed Robust Control

Distributed approach to robust

control for systems with fixed paths

 (Chapter 8)

Path discretization

and DES modeling

(Chapter 5)

Robust control in

unstructured environment

(Chapter 4)

Robot failures

Fixed paths

Hybrid Motion Control

Distributed and hybrid motion control

considering collision and deadlock avoidance

and continuous control inputs

 (Chapter 9)

Continuous

dynamics

DESs,

Length-horizon MP,

MPC

DESs,

State-horizon MPC

DESs,

State-horizon MPC

MP,

Time-horizon MPC

Complex path network

FIG. 1.3: Research contribution of the thesis.

finish its motion tasks, we may further require it to finish tasks with some given objec-

tives, such as optimizing motion smoothness and stability, and maximizing permissive

motion. This is the fourth level, i.e., performance optimization, and it is optional.

To achieve the above requirements during robot motion, discrete methods and con-

tinuous methods are widely used. Discrete methods usually partition the collision-free

environment into a set of discrete states, and the motion of robots can be modeled ex-

plicitly or implicitly by discrete event systems, such as Petri nets and transition sys-

tems. Based on supervisory control theory, discrete methods can deal with collisions

and deadlocks efficiently. Continuous methods study motion control by considering the

physical constraints of robots, such as kinematic/dynamic equations and acceleration

and velocity limitations. This kind of methods can deal with the physical limitations of

robots, and the outputs can easily feed back to robots. Besides, with the technologies of

optimization, they can also obtain required optimal outputs.

To leverage the advantages of discrete and continuous methods, this thesis applies

supervisory control of discrete event systems (DESs) and mathematical programming

(MP) as the main technologies to investigate distributed approaches to motion planning

and control in a multi-robot system. The main work and contributions are given in Fig.

1.3. To realize real-time motion, model predictive control (MPC) is applied in the thesis.

Chapter 1. Introduction 7

As shown in Fig. 1.3, our first work focuses on distributed trajectory planning. Most

of the current distributed techniques work only for distributed computation but all robots

should move simultaneously. This is because to resolve its local optimization problem, a

robot needs the computation results of the previous robots. Hence, a robot cannot move

with its new control inputs until all robots finish their computation. Our work proposes

a fully distributed method for robots moving in an unstructured environment. With the

time-horizon MPC strategy, on its current horizon, a robot communicates with its neigh-

bors to obtain their current states, which can be gotten immediately. Then it predicts its

neighbors’ positions on the current horizon and builds its local optimization problem.

The local optimization problem is then resolved independently using sequential convex

programming. In this way, each robot can compute and move in a fully distributed way

and there is no synchronization of time discretization or prediction horizon. The tech-

nologies applied in this work are time-horizon MPC and MP. This work answers our

first research question.

When paths are obtained from trajectory planning or path planning, the future robots

sometimes are fixed to move along these paths due to similar tasks or infrastructure lim-

itations. For example, in transportation systems, the routes for UGVs are fixed. Hence,

in the sequel, we study distributed approaches to motion control in a multi-robot system

where each robot has a fixed path. We first propose a distributed method to partition

paths into collision and collision-free segments. Each robot uses its sensors to detect

other paths that intersect with its path and determines the maximal continuous segments

whose distances to others are less than the given safe radius. After the discretization of

its path, a robot needs to communicate with others so to abstract its collision states. Ac-

cording on the abstracted states, a robot models its motion as a labeled transition system

(LTS). Based on the LTS models, we study a distributed approach to avoiding collisions

and deadlocks. On each horizon, a robot needs to determine whether its current move

transition can be fired or not. The robot checks collisions by directly monitoring the

status of its next state. To predict deadlocks, it needs to communicate with others via a

multi-hop communication path. Moreover, for some complex path networks, to avoid a

deadlock may cause another “circular wait”, and recursively cause more “circular wait-

s”. We call this situation higher-order deadlocks, which are current deadlock-free but

Chapter 1. Introduction 8

will inevitably lead to deadlocks with the evolution of the system. We introduce the

concept of deadlock orders and propose a distributed approach to avoiding higher-order

deadlocks. Communications are required to check higher-order deadlocks for a robot.

The technologies applied to avoid collisions and deadlocks are state-horizon MPC and

supervisory control of DESs. The second question is resolved in this part.

In practice, we cannot guarantee that all robots can work well. Instead, a robot may

fail unexpectedly. Hence, by labeling robots with reliable and unreliable, the third part

of the thesis focuses on robust control for a multi-robot system such that the failures

of robots have the least adverse effects on the whole system, i.e., block the minimal

number of robots. For systems where each robot can replan its path, robust control

can be achieved easily by regarding the failed robots as obstacles. For systems with

fixed paths, based on the LTS models, we propose a distributed approach to robust

control. On each horizon, a reliable robot checks whether there are any unreliable

robots at its current continuous sequence of collision states, and an unreliable robot

should communicate with others to determine whether it will move into their current

continuous sequences of collision states. In the proposed approach, state-horizon MPC

and supervisory control of DESs are applied. This work focuses on the third research

question.

As described before, DESs based methods cannot deal with continuous dynamics

of robots or generate control input acting on robots’ actuators directly. To deal with

both deadlock avoidance and robots’ kinematics, we propose a distributed and hybrid

method to generate collision-free and deadlock-free continuous control inputs. At each

discrete state, the related path segment is divided into a set of equal-length subsegments.

Using length-horizon MPC, each robot on each horizon performs two stages to generate

its control inputs. At the first stage, to avoid collisions and deadlocks, discrete control

determines the robots, if any, that it needs to wait for via a set of communications. At the

second stage, continuous control predicts its waiting time and builds a local optimization

problem taking into consideration the kinematic equations and time constraint of the

robot. Solving the optimization problem then generates the control input for the motion

along the current subsegment. Once the robot reaches the next subsegment, a new

horizon begins. This approach depends on the technologies of length-horizon MPC,

Chapter 1. Introduction 9

supervisory control of DESs, and MP. This work is also related the second question,

integrating the technologies developed in our first work.

1.3 Contributions of the Thesis

The main contributions of this thesis are highlighted in the following aspects.

First, we propose a real-time and fully distributed algorithm for trajectory planning

in multi-robot systems moving in unstructured environments. With the current states of

its neighbors, a robot can not only generate its trajectory in a distributed way but also

perform its motion in a distributed way.

Second, we propose a distributed algorithm for collision and deadlock avoidance

in multi-robot systems with fixed paths. A distributed method to predict deadlocks is

described in this algorithm.

Third, we introduce the concepts of higher-order deadlocks and their orders. To the

best of our knowledge, they are the first ones in literature. A distributed approach to

avoiding higher-order deadlocks is proposed.

Fourth, we study robust control in multi-robot systems, which aims to minimize the

number of blocked robots in a system. We propose two distributed algorithms, one for

reliable robots and one for unreliable ones, for robust control in multi-robot systems

with given path networks.

Fifth, we propose a hybrid and distributed approach to motion control in multi-robot

systems with fixed paths. It can not only deal with collisions and deadlocks efficiently,

but also generate continuous inputs for the actuators of robots.

At last, our work is an expansion of the supervisory control theory of DESs. We

not only apply the supervisory control theory of DESs for motion planning and control

in multi-robot systems, but also expand the idea of MPC strategy to DESs and propose

state-horizon MPC and length-horizon MPC.

Chapter 1. Introduction 10

1.4 List of Materials Related to the Thesis

The thesis mainly contains the materials from the following papers.

1. Yuan Zhou, Hesuan Hu, Yang Liu, Shang-Wei Lin, Zuohua Ding. “A real-time

and fully distributed approach to motion planning for multirobot systems,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, Oct. 2017. http:

//ieeexplore.ieee.org/document/8055437/.

2. Yuan Zhou, Hesuan Hu, Yang Liu, and Zuohua Ding. “Collision and deadlock

avoidance in multirobot systems: A distributed approach,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1712–1726, Jul.

2017.

3. Yuan Zhou, Hesuan Hu, Yang Liu, Shang-Wei Lin, and Zuohua Ding. “A dis-

tributed method to avoid higher-order deadlocks in multi-robot systems,” Auto-

matica, 2018. Submitted.

4. Yuan Zhou, Hesuan Hu, Yang Liu, Shang-Wei Lin, and Zuohua Ding. “A dis-

tributed approach to robust control of multi-robot systems,” Automatica, vol. 98,

pp. 1–13, Dec. 2018.

5. Yuan Zhou, Kun Cheng, Hesuan Hu, Shang-Wei Lin, Yang Liu, and Zuohua

Ding. “A hybrid approach to distributed motion control for multi-robot systems,”

2019.

1.5 Outline of the Thesis

The rest of this thesis is organized as follows.

Chapter 2 summarizes the state-of-the-art technologies for motion planning, dead-

lock avoidance, and robust control.

Chapter 3 prepares some basic preliminaries for this thesis, including illustrations

of multi-robot systems and LTSs, and the basic procedures of MPC and SCP.

http://ieeexplore.ieee.org/document/8055437/
http://ieeexplore.ieee.org/document/8055437/

Chapter 1. Introduction 11

Chapter 4, from Paper 1, gives our first work on real-time and fully distributed

approach to trajectory planning for multi-robot systems working in an unstructured

environment. This chapter contains the problem statement, construction of local op-

timization problem for a robot on each horizon and its SCP-based solution, simulation

experiments, discussion, and conclusion.

Chapters 5 − 7, from Papers 2 and 3, describe our work on distributed approach-

es to collision and deadlock avoidance in multi-robot systems where each robot has

a predefined path. Detailedly, Chapter 5 builds LTS models to describe robot motion

in the system, including collision segments detection, discrete state abstraction, and

the resulting LTS models. Chapter 6 proposes a distributed and real-time approach to

avoiding collisions and deadlocks based on the LTS models. We first study collisions

and deadlocks among robots in terms of LTSs, following what we propose a distributed

approach to avoiding collisions and deadlocks. Chapter 7 further investigates higher-

order deadlocks and their distributed avoidance. We first study the structural properties

of higher-order deadlocks from the system-level perspective, and then a distributed ap-

proach is proposed to avoid higher-order deadlocks.

Chapter 8, from Paper 4, focuses on robust control in a multi-robot system where

each robot has a fixed path. We first describe our control target in terms of LTS models,

and then propose two distributed algorithms, one for reliable robots and the other for

unreliable ones, to achieve robust control.

Chapter 9, from Paper 5, studies a distributed and hybrid approach to motion control

in the system described in Chapter 5. We first describe the discrete part, which detects

the robots that a robot needs to wait for at its current state in order to avoid collisions

and deadlocks. Then we study the continuous part, which builds a local optimization

problem considering the possible waiting time and resolves it to produce the current

acceleration. The communication protocols are given in the paradigm of Petri nets.

Chapter 10 finally concludes the thesis and provides an outlook on the future re-

search directions based on the current work.

Chapter 2

Related Work

Motion planning and control for robots is one of the most important and active topics in

robotics. In this chapter, we give a comprehensive literature review on the state-of-the-

art methods of motion planning and control for robots to avoid collisions and deadlocks,

and guarantee robustness.

2.1 Motion Planning

During the last decades, motion planning have been widely studied by researcher-

s [12–17]. The task of motion planning is to generate a feasible, even optimal, tra-

jectory or path for a robot such that the robot can move from its initial position to its

target without causing collisions. Many methods have been developed based on some

typical and attractive technologies: formal methods, state lattice, cell decomposition,

sampling, roadmap, bug algorithms, potential fields, velocity obstacles, mathematical

programming, spline curves, and reinforcement learning.

Formal methods [18–28] apply the technologies such as verification and model

checking [29–31] to control robots’ motion. The motion is first modeled by such as

automata and Petri nets, while the requirements, e.g., collision avoidance, are modeled

by logical descriptions, such as LTL (linear temporal logic) and CTL (computation tree

logic). Thus, model checking technologies can be applied to determine a sequence of

12

Chapter 2. Related Work 13

transitions or actions that satisfies the given LTL or CTL specifications. For example,

Saha et al [22] propose a compositional framework for motion planning of multi-robot

systems. The possible motion of a system is modeled as a special transition system

based on the given library of motion primitives, each of which leads to a transition of

the system. The safety and behavioral properties are described by LTL specifications.

An satisfiability modulo theories (SMT) solver then can automatically generate robots’

trajectories, which are characterized as the compositions of motion primitives.

Roadmap-based methods are widely studied in literature, such as [12, 32–46]. A

road map is a graph in the collision-free space where a vertex is a collision-free con-

figuration, and an edge represents a unique collision-free path, e.g., line segments, be-

tween its two endpoints in the collision-free space. Once a road map is generated, graph

searching algorithms, e.g., A* algorithm, D* algorithm, and fast marching method, can

be used to generate a path connecting the initial and target positions. The main process

for this kind of methods is to build the road map in the collision-free configuration.

Some common technologies to efficiently build a road map are visibility graph method-

s [36–39], Voronoi diagrams [40–43], and sampling methods [44–46]. The initial idea

of visibility graph is developed for polygonal obstacles, where the vertexes of obstacles

are the nodes of the graph, and two nodes are connected if the line segment joining

them does not pass through any obstacles. Some improvements focus on the refining of

the graph and approximation for non-polygonal obstacles. Voronoi diagrams are based

on Voronoi regions with respect to obstacles. Based on the obstacles, the configuration

is partitioned into a set of Voronoi regions, and the boundaries of these regions form

a Voronoi diagram, which is the generated road map. The above two technologies are

complete, but the computation efforts may be large. Probabilistic roadmap (PRM) in

an alternative method to generate a road map with low computation cost. The idea is to

generate a set of sampling points, including the initial and target points, in the collision-

free configuration space, and two nearby points are connected if the path, generated by

simple and fast local planners (e.g., linear motion), is feasible. Note that PRM is prov-

ably probabilistically complete and the rate of convergence depends on certain visibility

properties of the free space. Recently, for rural environment navigation [47], a road map

was first roughly generated based on the “topological” map of the environment, which

Chapter 2. Related Work 14

may be not exactly precise but at least the outline of a path can be obtained; the real

motion along each edge is then refined by the local perception system.

Cell decomposition methods [12, 48–52] concentrate on the partition of the config-

uration. In cell decomposition methods, the collision-free configuration space is first

partitioned into a set of adjacent but disjoint cells, either regular (approximate cell de-

composition) or irregular (exact cell decomposition) [12]. A robot can only move to an

adjacent cell from its current cell. Then any search algorithms, such as A* algorithm

or D* algorithm, can be used to determine a sequence of cells that the robot needs to

pass through. Two main problems in cell decomposition based methods are the con-

struction of cells [12, 52] and the motion within cells [48, 50]. For example, Dugarjav

et al in [52] propose an online cell decomposition method to explore an unknown en-

vironment in real time. Based on the detected environment with sensors, each cell is

composed and updated until it is unchanged. The work in [48, 50] applies roadmap

based method to navigate robot motion in each cell.

The general idea of state lattices [53–57] is to build a state lattice. A state lattice is a

connected graph where the vertexes, denoting the discrete states that a robot can arrive

at, are connected by specific patterns, representing the set of elementary motions or mo-

tion primitives. Detailedly, the configuration space of a robot is first sampled regularly

by a set of grid points; then a finite set of feasible motion primitives are generated to

connect the discrete points. Hence, a state lattice is built. Similarly, any graph search

methods can be applied to search for the state lattice to generate a route from the initial

state to the target one.

Sampling-based methods [58–71] are another kind of the state-of-the-art motion

planning technologies. Rather than explicitly exploring the obstacles, sampling-based

methods regard the collision detection as a “black box” and probe the configuration

space with a sampling scheme [14]. Two popular kinds of sampling-based methods

are the PRM methods [44–46] and rapidly-exploring random trees (RRTs) methods

[67, 69, 70]. The former one is a one-round sampling scheme, while the latter one is an

incremental sampling scheme. As described in the roadmap based methods, given the

initial and target positions, PRM methods generate all samples and build a road map

from the initial position to the target one. However, rather than construct the road map

Chapter 2. Related Work 15

in advance, RRT methods execute a single-query scheme and build a tree incrementally

from the start configuration to the goal configuration, or vice versa. At each round, it

first generates a sample in the collision-free configuration and selects the nearest vertex

for the sample in the current tree; then generates a new configuration with a given

distance to the nearest vertex along the direction to the sample one; finally adds an edge

to the nearest configuration to the new configuration. Similarly, once a tree is generated,

a graph search algorithm generates a path.

All the above technologies are discrete methods, which discretize the configuration

space into a set of discrete states, and then motion planning is to select a sequence of

discrete states that a robot needs to pass through. Discrete representation of a robot’s

motion can reduce computation complexity. However, it sacrifices feasibility, i.e., com-

puting a motion that satisfies different constraints, and optimality, i.e., generating a

motion that satisfies some optimal objectives. Hence, due to its capability to describe

robots’ physical dynamics and generate continuous values of motion variables (e.g.,

velocities or accelerations), continuous methods are also widely studied in robotics.

Bug algorithms [13, 72] are the simplest algorithms and can be implemented easily.

The basic idea of Bug algorithm is to control each robot move directly to its target.

Once an obstacle is found, the robot follows the boundary of the obstacle until the latter

is passed through, and then the robot moves to its target again. Some variants focus on

the determination of positions that a robot can move directly to its target. Due to its

simplicity, the generated path usually is not optimal.

Potential fields-based methods [73–83] are another kind of well-designed contin-

uous methods with physical metaphors. The main step in potential fields is to define

proper attractive potential functions, which can lead a robot to its target, and repulsive

potential functions, which drive robots away from the obstacles. Such functions can be

designed on the basis of forces, accelerations, and velocities. However, general poten-

tial fields are likely to cause local minima, which may cause robots not arrive at their

targets. As an improvement, navigation functions are proposed to deal with local mini-

ma. This kind of technologies builds a potential in a transformed space and maps it back

to the configuration space. For example, in [75], the configuration space is mapped to a

Chapter 2. Related Work 16

unit disk and then artificial potential field augmented with an appropriate adaptive con-

trol law is applied to generate the velocity of a robot. However, navigation functions

require complete knowledge of the environment and thus are off-line. Xu et al pro-

pose moment-based methods [84, 85], where the repulsive moments of obstacles and

the attractive moments of targets are designed to guarantee robots to avoid collisions

and converge to targets.

The methods based on velocity obstacles [86–88] focus on the velocity space and are

proposed initially for a robot with moving obstacles. Subsequently, reciprocal collision

avoidance based on the concept of velocity obstacles [89, 90] and its variations, such

as optimal reciprocal collision avoidance [91, 92], acceleration velocity obstacles [93],

and others [94, 95], are proposed for multiple robots. A velocity obstacle is the set

of velocities of a robot that will result in a collision with a moving obstacle at some

moment in the future. In velocity obstacle-based methods, the robot is the only one that

takes the responsibility to avoid collisions with obstacles, while in reciprocal collision

avoidance and its variations, considering reciprocity, each robot takes the responsibility

to avoid collisions. For example, in optimal reciprocal collision avoidance, the set of

safe velocities is evenly divided between two robots by defining halfplanes of safe and

possible velocities, which are the sets of individual velocities for two robots that result

in relative velocities outside of the velocity obstacle. The main assumption for this kind

of methods is that the velocity of a robot keeps constant over a finite time interval.

Mathematical programming is one of the most powerful technologies for motion

planning and control [96–106]. The key task for this kind of methods is to model the

motion planning problem as a proper optimization problem, such as mixed-integer op-

timization problem, quadratic optimization problem, convex optimization problem, and

so on. Since we can add different constraints, such as kinematics, dynamics, commu-

nication connectivity, target tracking, and collision avoidance, to build the optimization

problem, mathematical programming-based methods have great capability of applica-

tion. Combining with the MPC strategy, we can also apply it to do real-time plan-

ning [103–106]. There are usually two ways to construct optimization problems. The

first one is that for each multi-robot system, a coupled optimization problem is built

and solved, which will generate the control inputs of all robots in the system, such as

Chapter 2. Related Work 17

the work in [97]. This kind of methods can obtain the maximal motion performance of

robots, however, the problem usually is very large and the computation cost is high. An-

other one is to build a set of local optimization problems, each of which is assigned to a

robot, such as the work in [103]. Such decoupling can reduce the scale of the problem

and computation cost, but sacrifices some degrees of motion performance.

Spline curve based methods [107–111] plan robots’ paths via predefined spline

curves, such as β-curve, Bézier curves, and Bernstein curves. The priori assumption

is the path of a robot is composed of a set of piecewise predetermined spline curves.

Hence, the planner needs to determine the parameters of these spline curves so as to

generate a smooth path or other objectives.

Recently, with the development of machine learning technologies, reinforcement

learning has been a popular technology for robot motion planning and control in both

discrete and continuous motion spaces [112–118]. By modeling the motion of a robot

as a Markov decision process, reinforcement learning plans an action policy to reach a

desired goal state, through the maximization of a value function. With different forms

of Markov decision models, it can be either a discrete or a continuous method. Under a

reinforcement learning planner, at each discrete time instant, a robot chooses an action

from the set of available actions to maximize the value function based on the current

observation. With the selected action, the robot can move to the next state. The prima-

ry advantage of reinforcement learning lies in its inherent power of automatic learning

even in the presence of small changes in the world map. Different reinforcement learn-

ing algorithms, such as Q-learning and TD(λ), have been proposed [119].

The motion planning approaches we have described so far are either discrete or

continuous. There are also some works on the hybrid methods combining discrete and

continuous methods [120–127]. However, most of the current hybrid approaches focus

on both task allocation and motion planning. The discrete parts are for switching among

different tasks and the continuous parts are to generate continuous motion to finish the

related tasks. For example, Guo et al [123] proposed a hybrid approach to a team of

robots moving with contingent temporal tasks and formation constraints. The motion

of each robot is divided into two modes: navigation control and formation control. For

each mode, a navigation function method is designed to control robot motion.

Chapter 2. Related Work 18

All the above methods are suitable for robots moving in an unstructured environment

where robots can replan their paths or trajectories freely. However, sometimes, due to

infrastructure limitations (e.g., intelligent transportation systems and warehouse), or

priori path planning (such as the work in [53]), or previous robots’ motion, robots are

fixed on predetermined paths. For these cases, motion control for collision avoidance

is achieved by controlling robots to traverse a collision location at different times [128–

132]. For example, Smith and Rus et al [130] studied collision avoidance by repeatedly

resuming and stopping robot motion based on some stopping strategies such that they

can pass through the collision zones at different times. Wang et al [132] propose a

method to avoid collisions by assigning different initial time delays to robots.

Motion planning determines the reference paths or trajectories of robots. How-

ever, in practice, a robot may not move along the predefined path or trajectory ex-

actly. To guarantee that a robot can track its reference path or trajectory as accurate

as possible, researchers have designed some special tracking controllers, such as pure

pursuit-based controllers [133–135], PID (proportional, integral, and derivative) con-

trollers [136–138], fuzzy logic controllers [139, 140], and mathematical programming

based controllers [141–143], sliding mode control [144]. For example, the idea of pure

pursuit algorithms is that given a path and the nearest point on it with a given lookahead

distance from the current position, the real tracked path between the current position and

this position is a curve with a constant curvature, based on which the robot can com-

pute a steering command for the motion direction. A PID controller computes an error

value continuously and determines the control function based on three terms: propor-

tional (proportional to the current error), integral (integral of past errors), and derivative

(change rate of the current error).

Table 2.1 gives a brief summary of the state-of-the-art motion planning methods.

Even though motion planning has been widely studied, there are some open problems

that are not adequately addressed. First, most of the current approaches are either cen-

tralized or decentralized. Centralized methods lack the flexibility and robustness, while

decentralized ones may lead to low performance. Even though there are some distribut-

ed approaches recently proposed, most of them focus on distributed computation, but

Chapter 2. Related Work 19

TABLE 2.1: Summary of Different Motion Planning Algorithms

Methods Key Steps
Representative
Literature

Discrete
Methods

Formal Meth-
ods

Describe requirements using LTL and/or
CTL

[18, 19, 22]

Roadmap
methods

Build a road map (visibility graph, Voronoi
diagrams, sampling methods) and perform
graph search algorithms

[38, 41, 45]

Cell de-
composition
methods

Partition the configuration space into a set
of adjacent cells and perform graph search
algorithms

[12, 49, 50]

State Lattices
Build a state lattice based on motion prim-
itives and perform graph search algorithms

[54, 55]

Sampling
methods

Generate a set of samples and check colli-
sion avoidance between any two samples.
Two main methods are PRM and RRTs

[45, 67]

Continuous
Methods

Bug Algo-
rithms

Move directly to the target and follow the
boundary of the obstacles

[13, 72]

Potential
Fields

Build attractive and repulsive potential
functions

[73, 76, 77]

Velocity
obstacles

Construct a proper velocity obstacle, i.e.,
the set of velocities of a robot that will re-
sult in a collision, in the velocity space

[87, 89, 91]

Mathematical
Programming

Construct a proper optimization problem
and solve it efficiently

[96–98]

Spline Curves
Select predefined spline curves and deter-
mine proper parameters of these curves

[108–110]

Others
Reinforcement
Learning

Training data collection and model deter-
mination

[115–117]

Time Control
Compute different time delays such that d-
ifferent robots pass through the same posi-
tion at different times

[130, 131]

all robots should move synchronously rather than distributively. Second, given a mo-

tion task, most of the current approaches are either based on discrete abstraction or on

continuous models. Discrete abstraction usually cannot obtain the low-level inputs for

actuators directly; while continuous methods may cause high computation complexity.

2.2 Deadlock Avoidance

During the motion of multiple robots, deadlocks may occur among robots in order to

avoid collisions. The occurrence of deadlocks is also dangerous for a multi-robot system

Chapter 2. Related Work 20

since deadlocks will stop robots from moving forward and even stagnate the whole sys-

tem, which will degrade system performance inevitably. Indeed, deadlock avoidance is

a great challenge to systems containing multiple subsystems with shared resources, such

as automated manufacturing systems and multi-robot systems. Since the four condi-

tions, which are effectively defines a deadlock, were proposed in 1971 [145], deadlocks

have been widely studied in automated manufacturing systems and multi-robot system-

s, such as [146–170] and the references therein. Note that these two kinds of systems

are almost similar. Indeed, in a multi-robot system, the configuration space can be re-

garded as the set of resources and each robot’s motion is a process. Among the existing

works, there are mainly three strategies to solve deadlocks in systems: deadlock pre-

vention [147–155], deadlock recovery [156, 157], and deadlock avoidance [158–170].

Deadlock prevention is an off-line mechanism to avoid deadlocks. The main step

for deadlock prevention is to compute liveness conditions or design a proper controller

before a system is released such that deadlocks can never occur [147–152]. For exam-

ple, for Petri net models, we can apply state-based methods, e.g., finding conditions

of markings which guarantee system liveness [147], or structure-based methods, e.g.,

designing control policies guaranteeing that the siphons are non-empty [148]. Howev-

er, such strategies are with exponential computation complexity with regard to the size

of the nets [149]. Currently, some work focusing on decentralized control with local

search is also proposed [151, 152].

For deadlock recovery methods, deadlocks are resolved once they are detected

[146, 156, 157]. The main characteristic of this kind of strategies is that it allows the

occurrence of deadlocks since there are no checks before the execution of processes.

Once a deadlock is detected, some resolution methods are applied to resolve the dead-

locks. For example, in [157], deadlocks among multiple mobile robots are detected by

dynamically constructing and searching a waiting graph, where each node corresponds

to a robot and a directed edge between two nodes indicates that one robot is waiting

for another. Deadlocks are resolved by changing edge directions, i.e., changing motion

directions, or node connections, i.e., replanning motion trajectories, to avoid cycles in

the waiting graph. However, because of the existence of deadlocks, it is suitable for

Chapter 2. Related Work 21

the systems where deadlocks are rare and cannot result in severe catastrophes, and the

recovery is affordable [146].

Deadlock avoidance is an online strategy to avoid deadlocks. Via looking ahead

into the future system evolution, it first predict online whether the current evolution

would cause deadlocks and then take necessary actions to avoid deadlocks. Thus, no

deadlocks can occur during the evolution of a system [158–170]. Centralized or de-

centralized methods are used to predict deadlocks. Centralized methods usually focus

on structure analysis or reachability space of the whole system. For example, Yalcin

et al [165] use finite automata to model the manufacturing cells and the process plans.

Based on these automata, deadlocks are predicted and avoided by analyzing the state

space. Centralized methods can obtain high efficiency but cause high cost because of

the building and searching of the state space. While for decentralized methods, each

process or robot predicts its local evolution and checks whether there may cause dead-

locks. For example, Lee et al [161] study deadlock avoidance in zone-control automated

guided vehicle systems. After modeling the system via Petri nets, each vehicle predicts

deadlocks by checking the results of firing of its remaining transitions. The main cost

for this strategy is the prediction of deadlocks. Since the optimal deadlock avoidance

is NP-complete [171], some conservative methods are proposed in practice, such as the

Banker’s algorithm [172] and its variations [162,163]. The Banker’s algorithm requires

that at any time, the move of a robot should guarantee that each robot can move to its

destination sequentially in some order. While its variations focus on more relaxed mov-

able conditions. For example, in [162, 163], a robot can move forward if it can move to

a location that cannot be occupied by others, rather than to its destination. Decentral-

ized methods can predict deadlocks with lower computation cost but may prevent many

admissible motions.

Three main tools used in above strategies are graph theory, automata, and Petri nets.

Digraphs are an intuitive instrument to detect and avoid deadlocks. The main idea is

to use digraphs to model the request-supply relations between processes and resources

in a system, and then detect and avoid deadlocks by searching and avoiding cycles in

the graphs, such as the work in [130, 156–158]. For example, in [130], deadlocks are

detected and resolved in real time based on deadlock graph, a directed graph where an

Chapter 2. Related Work 22

edge from node i to node j means that robot i is stopped waiting for robot j. At each

time instant, if a cycle is to exist in the built deadlock graph, then deadlock is avoided

by deleting one of the edges in the cycle, meaning that one of the robots resumes its

motion.

Automata are another efficient tool to solve deadlock problems, such as the work

in [153, 154], and [165]. As stated in [153], with the supervisory-control theory de-

veloped by Ramadge and Wonham (R-W theory), automata theory would directly yield

deadlock-free supervisors during the construction of an automaton. Such supervisors

determine formally the set of states could reach as well as the set of events allowed

to occur at those states. With this statement, the authors in [153] study deadlock-free

schedules using time-augmented automata and A* algorithm.

Petri nets are also a powerful instrument to model the system dynamics and resolve

deadlocks. One can usually take advantage of the reachability graph, siphons, and live-

ness of Petri nets to characterize deadlocks, such as the work in [146–152, 159–161].

Petri nets can be used either for deadlock prevention or deadlock detection and avoid-

ance. For deadlock prevention, supervisory controllers are designed in advance based

on structural analysis, i.e., siphons, such that no deadlocks occur, or proper initial mark-

ings are designed based on reachable state analysis to avoid deadlocks. For deadlock

detection and avoidance, Hu et al propose a set of decentralized deadlock avoidance

algorithms, e.g., [159, 160], by predicting whether a process can safely reach to a place

without sharing any resources based on the current available resources.

Table 2.2 gives the summary of different deadlock resolution strategies. Due to real-

time change of the environment, we focus on deadlock avoidance in multi-robot system-

s. Except the fruitful results on deadlock avoidance, the balance between computation

complexity and system performance is still a great challenge. Centralized methods

can obtain the highest performance but is with a high computation complexity, while

decentralized methods reduce computation complexity significantly at the expense of

performance. Much attention is still paid on how to achieve a good performance with

acceptable computation cost.

Chapter 2. Related Work 23

TABLE 2.2: Summary of Different Strategies for Deadlock Resolution

Deadlock
Resolution

Main Idea Key Characteristics
Representative
Literature

Deadlock
Prevention

Design a deadlock-free controller
during the design of a system

Off-line; High com-
plexity

[147, 148]

Deadlock
Recovery

Change the behavior of a subsys-
tem once a deadlock is detected

Allow the occur-
rence of deadlocks

[156, 157]

Deadlock
Avoidance

Predict deadlocks in advance and
then take actions to avoid them

On-line; Centralized
or decentralized

[161,162,166]

2.3 Robust Motion

Robust control of the robotic systems is also widely studied, such as [173–189] and the

references therein. These methods can be roughly divided into three categories.

The first one is to obtain robustness by giving the system some degree of redun-

dancy, so that the tasks can still be completed by others even when some robots fail

unexpectedly, e.g., the work in [173–177]. For example, Dias et al [173] study the

means to ensure the robustness in a robot team when malfunctions occur. A set of re-

dundant strategies are proposed such that the tasks bestowed to the failed robots can

still be finished by other correctly-running robots. Thus, the team can still complete the

given tasks even when some robots fail. In [174], collaborative control, i.e., multiple

sources share the control of a single robot, is used to guarantee the robot’s motion ro-

bustness against the malfunctions of some resources. The main challenge of this kind of

methods is to select proper numbers of spare components or robots since a full backup

is consuming.

The second one is to add some mechanisms, which are used to detect failures so as

to recover/reconfigure the robots, into the system, such as the work in [178–182]. For

example, Dogar et al [178] propose a hierarchical planning approach to accomplishing

some multi-scale assembly operations. The robustness is achieved by the process of

failure detection and recovery: Once a scanner loses the track of a target object, the

system reverts back to an earlier stage in order to re-localize by using a wider field of

view systems. Hofbaur et al [179] propose a generalized framework to improve the

robustness of the motion of mobile robots. The proposed framework can automatically

Chapter 2. Related Work 24

monitor the driving device of a mobile robot and reconfigure the robot in cases of fail-

ures. Thus, high-level control like path-planner is only to change its behavior in case

of a serious damage. However, some failures are hard to detect; some may take a long

time to fix; some cannot be recovered on-line.

The last one is based on relaxing requirements or motion. In order to obtain the

robustness against uncertainties or disturbance of robots and environment, the system

is designed to be endowed with additional flexibility in terms of either deterministic

or probabilistic models, such as the work in [183–189]. For example, Blackmore et

al [184] use a probabilistic approach to planning vehicles’ flexible trajectories. Each

trajectory is described by the probabilistic distribution of a vehicle’s states. The proba-

bilities of collisions along these trajectories are designed to be below a given threshold.

Thus, each vehicle has the ability to deal with uncertainties, such as indefinite localiza-

tions, erroneous modelings, and unexpected disturbances. Hence, the whole system can

execute robustly. Liemhetcharat and Veloso [187] study the method to select a team of

robots, each of which has a failure probability, to construct a robust system. The ro-

bustness they consider is the probability of the performance exceeding a threshold. The

algorithms they propose are to maximize the robustness of the system. Sun et al [182]

study robust control of robots’ motion by rendering the real trajectory in a tube centered

along the reference one.

Most of the current work regarding robust control focuses on the system’s capability

to tolerate failures, changes, and disturbance so that the system can still work well or

complete its tasks. Sometimes, we cannot guarantee that robots will not fail or the sys-

tem can always complete its tasks. Once a robot fails inevitably and the system cannot

complete its tasks anymore, how to minimize the detrimental efforts of a failed robot

on other robots and maximize the performance of the system becomes more importan-

t. However, there is a little work focusing on this topic in automated manufacturing

systems, such as [190–192].

Chapter 3

Preliminaries

In this chapter, we describe some terminologies and preliminaries used throughout this

thesis.

3.1 Multi-Robot Systems

A multi-robot system is a system that contains multiple robots moving in a given en-

vironment. Suppose the workspace of the system is W , where W ⊂ Rn0 and Rn0 is

the n0-d Euclidian space. This means each robot can only move in W . Note that the

workspace W may contain obstacles O. In the sequel, we give some basic definitions

and assumptions of a multi-robot system used in this thesis.

Definition 1 (Path). Given the motion space W , a path of a robot, denoted as p, from

its initial position x0 ∈ W to the target xf ∈ W , is a geometric curve in W , which is

defined by a parameter equation: p = p(θ), θ ∈ [0, 1], mapping from [0, 1] to W , where

p(0) = x0 and p(1) = xf .

A path of a robot is independent of time; it describes the sequence of positions that

a robot needs to move to, but it does not stipulate the time that a robot needs to arrive at

each point.

25

Chapter 3. Preliminaries 26

Definition 2 (State). The set of attribute values identifying the status of a robot during

its motion is called a state, denoted as s. The set of all states is called state space of the

robot, denoted as S.

For example, in some discrete methods, robot motion is usually expressed as a for-

mal model, e.g., transition systems or Petri nets; in these cases, a state of a robot is a

state reachable in the formal model. In continuous methods considering the kinematics

of a robot, the status of a robot is usually characterized by the set of position, velocity

and acceleration; hence, a state of a robot is the value vector of position, velocity and

acceleration.

Definition 3 (Trajectory). A trajectory of a robot ri, denoted as q, from the initial state

q0 to the target qf , is a time parameterized function: q = q(t), t ∈ [0, τ], mapping from

the time interval [0, τ] to its state space S, where q(0) = q0 and q(τ) = qf .

Different from a path, a trajectory of a robot is parameterized by time and describes

where and how a robot moves during its motion.

Definition 4 (Configuration). Given a multi-robot system with N robots {ri, i =

1, 2, . . . , N}, the status of the system is called a configuration, denoted as c, which

is the set of the states of all the robots, i.e., c = (s1, s2, . . . , sN), where si ∈ Si is the

state of ri and Si is the state space of ri.

Basic Assumptions. The evolution of a multi-robot system relies on a lot of things,

such as the motion control algorithms, the sensors to monitor the environment, the com-

munication via wireless network, and so on. However, we cannot deal with all of them

in this thesis. As usual, the clarity of one perspective’s discussion can be attained by the

negligence of others, i.e., their correctness is assured by default. In this thesis, we focus

on the design of planners for motion planning and control. Thus, to simplify the prob-

lem, we need some additional assumptions. Note that if an assumption is not satisfied,

we can refer to solutions in the related community to fix it first.

1. Location and Communication Assumptions. There are two kinds of ranges for each

robot. One is sensing range, and the other is communication range. The sensing

range relies on the sensors to be deployed, such as laser sensors; while the commu-

nication range is based on the wireless network. Usually, these two kinds of ranges

Chapter 3. Preliminaries 27

are mutually independent. However, communication range should be larger than

sensing range since a robot needs to communicate with the robots within the sensing

range for the sake of collision avoidance. Moreover, we assume that each robot can

locate other robots or obstacles within its sensing range using the sensors.

2. Each robot can communicate with its neighboring robots within the communication

range directly. Via a multi-hop communication path, a robot can further communi-

cate with the robots beyond the communication range. We do not consider packet

delays, errors, and drops during robots’ communication.

3. Robot Assumptions. With proper actuators, a robot can always move along the de-

sired path with a tolerable derivation. This derivation can be addressed by constrain-

ing the robot into the safe radius.

3.2 Labeled Transition Systems

In literature, there are many formal models applied to model robot motion, such as au-

tomata, Petri nets, and transition systems [29]. In this thesis, labeled transition systems

are applied due to their generic semantic and wide applications.

Definition 5. A labeled transition system (LTS) is a quadruple 〈S,Σ,→〉, where

• S is a finite set of states,

• Σ is the set of labels (or actions), and

• →⊂ S × Σ× S is a finite set of transitions.

The transition triggered by an event δ from si to sj , i.e., (si, δ, sj) ∈ →, is denoted

as si
δ→ sj . Let Pos(s) be the set of succeeding states of s, i.e., Pos(s) = {s′ ∈ S : ∃δ

∈ Σ, 3 s δ→ s′}. Similarly, the set of preceding states of s is Pre(s) = {s′ ∈ S : ∃δ ∈
Σ, 3 s′ δ→ s}.

For example, Fig. 3.1 shows an example of LTS models. In this example, the set

of states is S = {s1, s2, . . . , s7}, the set of labels is Σ = {e1, e2, . . . , e9}, and the

Chapter 3. Preliminaries 28

e1

e2

e3 e4

e5

e6

e7

e8

e10

s1
s2

s3 s4

s5 s6

s7
e9

FIG. 3.1: An example of LTS.

transitions are s1
e1→ s2, s1

e2→ s5, s2
e3→ s3, s3

e4→ s4, s3
e5→ s3, s3

e6→ s6, s4
e7→ s1,

s5
e8→ s6, s6

e9→ s7, and s7
e10→ s1.

3.3 Model Predictive Control

This section gives a brief review of the idea of model predictive control (MPC). Please

refer to [193] for details.

MPC is not a specific control algorithm but is a general strategy for a kind of control

methods. It applies an explicit model to describe the control system and obtains a

sequence of control inputs by solving an optimization problem based on the model. By

receding strategy, each time only the first control input in the sequence is applied to

the system, and then the horizon moves to the future. The general process of MPC

is given in Fig. 3.2. As shown in Fig. 3.2(a), suppose explicit model of the system is

q[t+1] = g(q[t],a[t]). Given a finite horizon [k0, k0+H] from the current time k0, MPC

based methods compute the optimal control signals on the horizon, i.e., {a[k0],a[k0 +

1], . . . ,a[k0 +H−1]}, as well as the future outputs {q[k0 +1], q[k0 +2], . . . , q[k0 +H]},
shown as the dashed curves in Fig. 3.2(a), by solving an optimal problem. Among the

optimal inputs on the horizon, only the first signal a[k0] is adopted as the control input

and the process evolves to q[k0 + 1], which is shown by the bold line in Fig. 3.2(b).

As time proceeds to k0 + 1, the horizon recedes to [k0 + 1, k0 +H + 1] and the related

optimal control signals a[k0 + 1], . . . ,a[k0 +H] are computed, which are shown in the

dashed lines in Fig. 3.2(b).

Chapter 3. Preliminaries 29

k0

k0 + 1

k0 +H − 1

k0 +H. . .

q(t)

q[k0]

q[k0+1]
q[k1-1]

q[k1]

a[k0]

a[k0+1]

a[k0 +H − 1]

k0 + 1

k0 + 2 k0 +H

k0 +H + 1

. . .

a[k0 + 1]

a[k0+2]

a[k0 +H]

a(t)a(t)

q(t)

q[k0]

q[k0+1]

q[k0+2]

q[k0 +H]

q[k0 +H + 1]

k0

time proceeds
to k0 + 1

(a) Current time instant k0 (b) Current time instant k0 + 1

FIG. 3.2: General process for MPC-based control methods.

3.4 Sequential Convex Programming

As described in Section 3.3, an MPC based method needs to solve an optimization

problem on each horizon. Usually, this problem is non-convex and is not known to

admit polynomial time algorithms. In fact, most are NP-hard such that finding a poly-

nomial time solution is impossible [194]. However, sequential convex programming

(SCP) [195] gives a local optimal but efficient approximate method to solve non-convex

programming, facilitating the advantages of convex optimization. In this section, we

describe some basic knowledge about convex programming and sequential convex pro-

gramming. For details, please also refer to [196, 197].

Suppose function f : Rn → R is defined on the domain D ⊂ Rn. f is a convex

function inD ifD is a convex set and ∀x1, x2 ∈ D and ∀θ ∈ [0, 1], f(θx1+(1−θ)x2) ≤
af(x1) + (1− a)f(x2). Consider the following general optimization problem:

min f0(x)

subject to fi(x) ≤ 0, i = 1, 2, . . . ,m,

hi(x) = 0, i = 1, 2, . . . , l.

(3.1)

(3.1) is a convex optimization problem if f0, f1, . . . , fm are convex functions, and

hi(x) = aTi x− bi, where a1, a2, . . . , al are constant vectors, and b1, . . . , bl are scalars.

Next, we give a brief overview of the SCP procedure to solve (3.1) approximately

in its general case. The basic idea of SCP is to approximate the original non-convex

optimization problem via a sequence of convex optimization problems, whose solutions

Chapter 3. Preliminaries 30

are convergent to a local optimal solution of the original one. Given an initial value x0,

SCP obtains the approximate solution via iterations. At iteration k with the obtained

xk, k = 0, 1, 2, . . ., it maintains a convex trust region D(xk) near xk; then constructs

and solves an convex optimization Pa(xk) of (3.1) over D(xk); the optimal solution of

Pa(x
k) is xk+1, which is used at iteration k + 1. One possible way to preform the SCP

procedure at iteration k can be described as follows. First, the trust region is typically

maintained by (3.2), where ρ is a given value.

Dk = {x|‖x− xk‖2 ≤ ρ} (3.2)

Second, the construction of Pa(xk) can be done using (3.3)−(3.5).

f̃i(x) = fi(x
k) +∇fi(xk)T (x− xk), (3.3)

f̃i(x) = fi(x
k) +∇fi(xk)T (x− xk) +

1

2
(x− xk)T∇2fi(x

k)(x− xk), (3.4)

h̃i(x) = hi(x
k) +∇hi(xk)T (x− xk), (3.5)

where ∇fi(xk) and ∇2fi(x
k) are the gradient vector and Hessian matrix of fi(x) at xk,

respectively. Indeed, for each non-convex function fi in the inequality constraints, we

apply its first-order or second-order Taylor approximation, i.e., (3.3) or (3.4); the affine

approximation of each non-convex equality constraint is given by its first-order Taylor

approximation, i.e., (3.5); and f̃i(x) = fi(x) and h̃i(x) = hi(x) for others. Hence,

Pa(x
k) can be described as:

min f̃0(x)

subject to f̃i(x) ≤ 0, i = 1, 2, . . . ,m,

h̃i(x) = 0, i = 1, 2, . . . , l,

x ∈ D(xk).

(Pa(xk))

Chapter 4

Fully Distributed Approach to

Trajectory Planning for Multi-Robot

Systems

In this chapter, we study fully distributed trajectory planning for multi-robot systems,

where each robot is equipped with some sensors of limited sensing ranges and moves

in an unstructured and changing environment. Fully distributed means each robot will

perform both computation and motion in a distributed manner.

4.1 Introduction

In an unstructured environment, there are usually many feasible trajectories in the mo-

tion space. One important issue is how to select a trajectory satisfying some require-

ments, such as shortest moving distance, shortest motion time, or fewest encountered

obstacles. In the form of mathematical programming, we can achieve great capability to

describe not only multiple constraints simultaneously [96], such as kinematics, dynam-

ics, connectivity, target tracking, and collision avoidance, but also different objectives,

such as shortest distance, shortest time, and minimum energy consumption. Hence,

mathematical programming is one of the most active technologies.

31

Chapter 4. Distributed Approach to Trajectory Planning 32

Almost all the existing mathematical programming-based methods describe motion

planning problems in centralized or decentralized forms. For the centralized form, the

system is modeled by an optimization programming and the control inputs of all robots

are determined simultaneously [12, 14]; while for the decentralized form, each robot

is modeled as an optimization programming and robots’ decision variables are deter-

mined in a sequential manner since the latter one needs some information computed by

the previous robots [98,103]. However, both of them have to control the robots to move

simultaneously, and thus the robots lack motion flexibility. 1) Centralized methods can

obtain the best cooperation performance of a system, but the computation complexity

is very high. Since the control signals of robots are computed at the same time, all

robots move simultaneously and the system lacks robustness and scalability. 2) Decen-

tralized methods can reduce computation complexity by decoupling the problem into a

set of subproblems, each of which can be solved by an individual robot distributively.

However, to solve its own subproblem, a robot may need the computation results from

its neighbors. Thus, it needs to explicitly or implicitly assign robots with priority in

advance so that they can compute the trajectories sequentially [98, 103]. As a result,

robots cannot move forward until all robots finish their prediction.

In this chapter, we propose a real-time and fully distributed trajectory planning

method for multi-robot systems. Robots in the system are required to move from the

initial positions to the given destinations without collisions. Each robot is equipped

with some sensing devices with limited sensing ranges. This means at any time, a robot

can only detect a local environment. In order to ensure that each robot can complete

the given motion task with high efficiency and autonomy, we propose a fully distributed

and real-time approach to trajectory planning. It is a method based on MPC strategy

and mathematical programming. First, because of the local knowledge of the operating

environment, we apply MPC strategy for each robot to update its detected environment

and local valid trajectory in real time. Second, based on the detected environment on its

current prediction horizon, a robot builds its own decoupled optimization subproblem,

which may contain some parameters dependent on the future states of its neighboring

robots. To construct its own problem independently, a robot makes a prediction of its

neighbors’ motion by communicating with its neighbors to retrieve their current and/or

Chapter 4. Distributed Approach to Trajectory Planning 33

history states, rather than waiting for the prediction information from its neighbors.

Third, the subproblem is solved via the iSCP method [98]. Since the building and solv-

ing of the subproblem do not rely on other robots’ prediction, each robot can solve

the subproblem and execute its motion in a distributed way. Fourth, once the time up-

dates to the next horizon, the robot will update the environment and the communication

with its new neighbors. Because of the great capability of description of mathematic

programming, the proposed method is suitable for both 2D and 3D scenarios with any

types of kinematics.

The main contribution of this work is a real-time and fully distributed trajectory

planning method for multi-robot systems where each robot has no priori knowledge of

the global environment. It has the following characteristics. 1) It uses MPC strategy

to update the environment and update prediction results. Thus, each robot can plan it-

s trajectory in real time. 2) It is fully distributed. Each robot communicates with its

neighbors within its sensing range to retrieve some information which can be obtained

immediately, such as the current states and the history records. With such information

and the detected environment, robots can build and solve their own local subproblems

independently. Thus, they can move in a distributed way without requiring the same pa-

rameter settings. 3) For each robot, the subproblem built at each time instant is resolved

via the iSCP method, which is an improvement of SCP method. The significance of the

proposed method is that each robot can both compute and move in a fully distributed

way. This improves the flexibility and robustness of a multi-robot system, which are

important in a multi-robot system. We also prove that the proposed method is with the

minimal communication amount at each time instant.

This chapter is organized as follows. Section 4.2 states the problem addressed in this

work. Sections 4.3 and 4.4 give the problem formalization and the algorithm to solve

it, respectively. Section 4.5 gives some simulation results. Sections 4.6 and 4.7 give the

discussion of the proposed method and the conclusion of our work, respectively.

Chapter 4. Distributed Approach to Trajectory Planning 34

4.2 Problem Statement

This part gives the problem statement of real-time trajectory planning in a multi-robot

system. We first give a brief description of a multi-robot system, including the kine-

matics of robots, and then the problem statement. Suppose N is an integer indicating

the number of robots, IN = {1, 2, . . . , N}, and ri, i ∈ IN , denotes robots. The motion

space of each robot is in Rn0 ; xi, vi, and ai are vectors in Rn0 , denoting the position,

velocity, and acceleration of robot ri, respectively. If Rn0 = R2, then it describes 2D

scenarios such as for UGVs; while if Rn0 = R3, then it is for 3D scenarios such as for

UAVs. [0, ti] is the time interval for robot ri to move.

Based on Definition 2 in Section 3.1, the state of robot ri, denoted as si, described

in this chapter is a vector characterized by position, velocity, and acceleration, i.e.,

si = (xi
T ,vi

T ,ai
T)T , where (•)T denotes the transposition operation of a vector. The

set of all possible states of ri forms the state space of ri, denoted as Si. Suppose qi is

the trajectory of ri in the time interval [0, ti]. Then, ∀τ ∈ [0, ti], the state of ri at time

τ is qi(τ) = (xi(τ)T ,vi(τ)T ,ai(τ)T)T ∈ Si, where xi(τ), vi(τ), and ai(τ) are ri’s

position, velocity, and acceleration at time τ , respectively.

Thus, to plan the trajectory of a robot is to determine the evolution of xi, vi, and ai.

These measures are described by the kinematics of the robot. The kinematics of ri is

given by the following equations.

ẋi(τ) = vi(τ), v̇i(τ) = ai(τ),∀τ ∈ [0, ti]; (4.1)

xi(0) = xi0,xi(ti) = xif ,vi(0) = 0,vi(ti) = 0; (4.2)

vi(τ) ∈ [vmin,vmax],ai(τ) ∈ [amin,amax]. (4.3)

where xi0 and xif are the initial and target positions of ri, respectively; ẋi(τ) and v̇i(τ)

are the derivatives of xi(τ) and vi(τ) with respect to the time variable τ , respectively;

vmin and vmax are the vectors containing the lower and upper bounds of each velocity

component, respectively. So are amin and amax for each acceleration component. Note

that for such kinematics, the control inputs are its acceleration.

Chapter 4. Distributed Approach to Trajectory Planning 35

TABLE 4.1: Summarization of Symbols in This Chapter

Symbols Meanings
xi0, xif The initial and target positions of robot ri, respectively.

ti, hi, Ti
The required arrival time, discrete time step, and the number
of discrete instants of ri, respectively; ti = Tihi.

xi[k], vi[k], ai[k]
The position, velocity, and acceleration of ri at the discrete
time instant k, k ∈ {1, 2, . . . , Ti}.

ai[k0 : Ti − 1]
The sequence of accelerations from k0 to Ti − 1: ai[k0],
ai[k0 + 1], . . ., ai[Ti − 1].

Hi The length of prediction horizon of ri.
k0 The current time instant.

k0,Hi

The end time instant of the current prediction horizon,
k0,Hi

= min{k0 +Hi, Ti}.
Hi[k0]

The set of discrete time instants in the current prediction hori-
zon,Hi[k0] = {k0 + 1, . . ., k0,Hi

}.
Oαi [k0], Oβi [k0]

The sets of static and dynamic obstacles detected by ri at the
current instant k0.

ρ The safe radius of robots.

Suppose a multi-robot system contains N robots, whose kinematics are described

by (4.1)−(4.3). Different robots are placed at different initial positions xi0, and they

need to move to different target positions xif . Each robot has no priori knowledge of the

operating environment, and the environment may be changing. Moreover, the robots

are equipped with sensors to detect the environment. Suppose the sensing range is L,

and thus each robot can only detect the environment within its sensing range. Recall

that in our basic assumptions described in Section 3.1, each robot can detect and locate

other robots and obstacles within its sensing range.

In the sequel, we give the problem resolved in this chapter:

Problem 1. Given a multi-robot system with N robots, whose kinematic equations are

given in (4.1)−(4.3), initial and target positions are p0 = {x1
0,x

2
0, . . . ,x

N
0 } and pf =

{x1
f ,x

2
f , . . . ,x

N
f }, satisfying ∀i, j ∈ IN , i 6= j, xi0 6= xj0 and xif 6= xjf , find a trajectory

for each robot ri such that it can move from xi0 to xif without causing any collisions

with other robots and obstacles in the environment.

Before giving the solution of this problem, we first show in Table 4.1 the symbols

used in this chapter.

Chapter 4. Distributed Approach to Trajectory Planning 36

4.3 Formal Modeling for the Problem

In this section, we model our problem as a distributed optimization programming.

4.3.1 Problem Analysis

First of all, we analyze the main challenges of the problem described in Section 4.2 to

have a better understanding.

First, local environmental knowledge and local available kinematics. Due to the

limitation of the sensing and communication ranges, each robot can only detect some

limited information of the motion environment. Let us take a wheeled robot in 2D

as an example. But this does not mean that it is only for wheeled robots. Indeed, as

described before, it can be for both 2D and 3D scenarios. As shown in Fig. 4.1, the

sets of obstacles detected by the robot at x1, x2, and x3 are {o1, o2, o3}, {o3, o4}, and

{o4, o5, o6}, respectively. Moreover, if the environment can change dynamically, a robot

may also find different obstacles within the same sensing range. Thus, with the current

information, only the trajectory in the current sensing region is available at the current

time instant. This means that at each time instant, only the kinematics within the current

sensing range is available. Note that such limited information may not lead a robot to its

target, which is regarded as the problem of completeness or convergency. In this chapter,

MPC strategy is applied to detect obstacles in real time. To guarantee the convergency,

the whole kinematics is taken into consideration even though the kinematics beyond the

sensing range is unreliable.

Second, fully distributed motion. In a multi-robot system, multiple robots are mov-

ing in a shared environment simultaneously, and different robots may execute different

tasks. In order to improve flexibility of the system, robots are expected to move in a

fully distributed way. This implies that each robot needs to plan its trajectory and ex-

ecute its motion only by communicating with its neighbors to retrieve some directly

obtained information, rather than by waiting for others’ prediction information since 1)

in some cases, to obtain such information, a robot has to wait for other robots to finish

Chapter 4. Distributed Approach to Trajectory Planning 37

L

L

x1

x3o1

o2

o3

o4

o5

rjo7

ri
x2

L
x0

xf

FIG. 4.1: A robot moves with a limited sensing range. x0 and xf are the initial and
target positions, respectively. The dashed circles are the boundaries of sensing area,
where L is the sensing range. o1 − o7 are obstacles in the environment. The robot
detects different obstacles at different positions. The robot detects obstacles o1 − o3

when it is at x1, o3 and o4 at x2, and o4 − o6 at x3.

their computation; and 2) because of the different time discretization steps, the predict-

ed information by other robots may not be the required one at the time instants of this

robot. Thus, a robot needs to predict the future motion of its neighbors to avoid collision

during the current prediction horizon. In this work, a robot adopts a linear method to

predict its neighbors’ positions by assuming they are doing uniform linear motion in its

current prediction horizon. We say it is reasonable for the following two reasons: 1) Be-

cause of the physical laws, the velocity cannot change suddenly; 2) Only the positions

at the next time instant are functional since a robot needs to re-predict others’ motion

once it moves to the next time instant.

Third, optimization criteria. Even in a clustered environment, a robot may have

lots of feasible trajectories to its target. Because of some requirements or limitations,

there are some criteria required, such as minimum distance, minimum rotation, and so

on [15]. For example, if the motion task is urgent, then a robot is expected to move with

minimum time; if the energy is limited, then a robot should move with minimum control

effort. Hence, a planning algorithm should be able to adjust to different optimization

criteria. We deal with motion planning via mathematical optimization since we can

formulate different optimization objectives to much extent.

Considering the above requirements, we in the sequel give the detailed model for

the real-time motion planning.

Chapter 4. Distributed Approach to Trajectory Planning 38

4.3.2 Construction of Distributed Optimization Programming

In this subsection, we give the optimization formulation of the trajectory planning prob-

lem. First, we give the discrete-time forms of (4.1)−(4.3).

Suppose the time interval of robot ri, i ∈ IN , is discretized into Ti discrete time

instants with an equal time step hi, i.e., 0 = τ0, τ1, . . ., τTi = ti, where τk = khi for

k = 0, 1, 2, . . ., Ti. Note that the selection of hi should satisfy ‖vmaxhi‖2 ≤ L, where

‖·‖2 is the 2-norm in the Euclidean space and L is the sensing range. This condition

guarantees that the first predicted position is within the sensing range and thus available.

The discrete-time kinematics of ri at the current time instant k0 can be described as:

xi[k + 1] = xi[k] + vi[k]hi +
ai[k]

2
h2
i , (4.4)

vi[k + 1] = vi[k] + ai[k]hi, (4.5)

vi[k] ∈ [vmin,vmax],ai[k] ∈ [amin,amax]. (4.6)

xi[Ti] = xif ,vi[Ti] = 0, (4.7)

k = k0, . . . , Ti − 1.

where xi[k0] and vi[k0] are the current position and velocity of ri, respectively.

In the sequel, we give the procedure to construct the final optimization problem of

the multi-robot system at the current time instant k0. Note that Hi is the length of the

prediction horizon of ri; the discrete time instants in the current horizon are denoted

as Hi[k0] = {k0 + 1, . . ., k0,Hi
}, where k0,Hi

= min{k0 + Hi, Ti}. For simplicity, we

use xi(Hi[k0]) to denote ri’s positions at the time instants in Hi[k0], i.e., xi(Hi[k0]) =

{xi[k0 + 1], . . ., xi[k0,Hi
]}.

Decoupled Objective Function. A typical objective function for a multi-robot sys-

tem with N robots at the current time instant k0 can be described as follows.

f =
N∑

i=1

N∑

j=1

Ti−1∑

k1=k0

Tj−1∑

k2=k0

wija
T
i [k1]aj[k2] (4.8)

Chapter 4. Distributed Approach to Trajectory Planning 39

where wij , i, j ∈ IN , are scalar weights. By choosing different weights, this

objective function can describe different measures, such as the total path length,

i.e.,
∑N

i=1

∑Ti−1
k=k0
‖xi[k + 1] − xi[k]‖2, and the control effort of the system, i.e.,

∑N
i=1

∑Ti−1
k=k0
‖ai[k]‖2.

In the general case, the function in (4.8) couples the accelerations of all robots. This

makes the problem centralized rather than distributed. Hence, we need to decouple (4.8)

so that each robot can optimally predict its trajectory autonomously. To make sure that

ri only needs to determine its own optimal accelerations, i.e., ai[k0 : Ti − 1], we set

wij = 1 for i = j and wij = 0 for i 6= j in (4.8). So the decoupled objective function

for ri is given in (4.9).

f iobj =

k0,Hi
−1∑

k=k0

‖ai[k]‖2
2 +

Ti−1∑

k=k0,Hi

‖ai[k]‖2
2 (4.9)

where k0,Hi
= min{k0 +Hi, Ti}. Hence, the optimal objective for ri is:

min
ai[k0:Ti−1]

f iobj =

k0,Hi
−1∑

k=k0

‖ai[k]‖2
2 +

Ti−1∑

k=k0,Hi

‖ai[k]‖2
2.

We say this individual objective is meaningful since it means that robot ri wants to

induce a smooth trajectory with the lowest curvatures. This objective function contains

two parts for k0 + Hi < Ti. The first one is with respect to the acceleration on the pre-

diction horizon, which ensures collision avoidance with the observed obstacles; while

the second one is a penalty term that can guarantee the global target convergence, i.e.,

the robot can arrive at its target at the end of the given time interval. From this optimal

objective, we find that the only optimal variable for each robot is its acceleration.

Kinematic Constraints with Target Convergence. The discrete-time kinematic con-

straints at time instant k0 are described by (4.4)−(4.7). The kinematics can also be

divided into two kinds when k0 + Hi < Ti. The first one is the desired kinematics on

the prediction horizon, i.e., ∀k ∈ Hi[k0]; while the second one is the kinematics beyond

the horizon, i.e., k = k0 + Hi, . . ., Ti − 1. The former one is the available kinematics

since they are considered to avoid collisions with the observed environmental obstacles

Chapter 4. Distributed Approach to Trajectory Planning 40

and other robots. The latter one is for the global target convergence, and they do not

need to consider any collision avoidance constraints.

Collision Avoidance Constraints with Local Detection. Now we give the constraints

for collision avoidance. Because of the change of the environment, a robot may observe

different obstacles, including the external obstacles and other robots, in its sensing range

at different time instants. Suppose Oi[k0] is the set of obstacles that ri detects at time

instant k0. It can be divided into two kinds. The first one is the set of static obstacles,

denoted asOαi [k0]. A static obstacle is an object with zero velocity forever. At any time,

ri can locate the positions of the static obstacles in its sensing range. The second one

is the set of dynamic obstacles, including other robots, denoted as Oβi [k0]. A dynamic

obstacle is an object with a non-zero velocity. At any time, ri can retrieve the positions

and velocities of the dynamic obstacles in its sensing range. With this information,

ri further needs to predict their positions in the future. Clearly, we have Oi[k0] =

Oαi [k0] ∪ Oβi [k0] and Oαi [k0] ∩ Oβi [k0] = ∅.

Suppose each robot has a safe radius ρ, and thus it is modeled as a sphere. By

enlarging the obstacles with the safe radius, we can construct c-obstacles, as well as

the configuration space. In this way, each robot can be regarded as a point. Usually,

Minkowski sum can be used to construct the c-obstacles [13]. However, in order to pre-

serve the polyhedral shapes, we apply another way to build the c-obstacles of polyhedral

obstacles, which is described later.

Remark 1. In practice, a robot may not locate at the given positions exactly because

of some uncertain events, such as the sliding of wheels. However, such derivation

should not be large. Suppose the maximal tolerable derivation is δ. We can address

this derivation by adding δ to the original safe radius ρ0. So the actual safe radius is

ρ = ρ0 + δ. If the deviation is larger than δ, we need to check the physical conditions

of the robot manually.

Next, we give the details of the collision avoidance constraints. Recall that k0,Hi
=

min{k0 +Hi, Ti} andHi[k0] = {k0 + 1, . . ., k0,Hi
}.

Collision avoidance with static obstacles. Usually, most static obstacles in the en-

vironment are with irregular shapes such that we cannot describe them in closed-form

Chapter 4. Distributed Approach to Trajectory Planning 41

ρri

(a) Collision avoidance with
a static spherical obstacle

ri

(b) Collision avoidance with
a static polyhedral obstacle

Aox ≤ bo

Ao,1

Ao,2

Ao,3Ao,4

Ao,5

Ao,6

· · ·
· · ·

Ro

ρ

c-obstacle c-obstacle

FIG. 4.2: Collision avoidance with different shapes of static obstacles. The gray re-
gions represent the obstacles and the dashed boundaries are the safe boundaries.

expressions. Thus, we first need to model them with approximate regular shapes. In this

work, a static obstacle is approximated as a sphere or polyhedron. SupposeOα1
i [k0] and

Oα2
i [k0] are the sets of spherical and polyhedral approximations of the static obstacles,

respectively. Thus, Oαi [k0] = Oα1
i [k0] ∪ Oα2

i [k0] and Oα1
i [k0] ∩ Oα2

i [k0] = ∅. Fig. 4.2

shows collision avoidance with different shapes of static obstacles.

For a spherical obstacle o, the collision avoidance constraints can be written as

‖xi[k]−xo‖2 ≥ ρo+ρ, where xo and ρo are the center and radius of obstacle o, respec-

tively. Thus, the collision avoidance constraints with respect to the spherical obstacles

can be given by (4.10).

∀o ∈ Oα1
i [k0],∀k ∈ Hi[k0],

‖xi[k]− xo‖2 ≥ ρo + ρ.
(4.10)

A polyhedral obstacle o is modeled by a set of linear inequalities, i.e., {x|Aox ≤
bo}, where Ao = (ATo,1, . . . , A

T
o,m)T and bo = (bo,1, . . . , bo,m)T are a matrix and a vector

with proper dimensions, respectively. So the collision avoidance constraints for such

obstacles are:

∀o ∈ Oα2
i [k0],∀k ∈ Hi[k0],

xi[k] /∈ {x|Aox < bo + ‖Ao‖•ρ}.
(4.11)

where ‖Ao‖• = (‖Ao,1‖2, . . . , ‖Ao,m‖2)T .

Chapter 4. Distributed Approach to Trajectory Planning 42

xi[k0,Hi]
xi[k]

x̃j [k0 + 1] x̃j [k0,Hi]x̃j [k]xj [k0]

xi[k0]

xi[k0 + 1]

≥ 2ρ ≥ 2ρ
≥ 2ρ

· · · · · ·

· · · · · ·

FIG. 4.3: Illustration of collision avoidance with rj from time k0. The points with
crosses are rj’s positions predicted by ri. The distance between the two positions with

the same time should not be less than 2ρ.

Collision avoidance with dynamic obstacles. Here we only consider a simple sit-

uation: The only dynamic obstacles are the robots. At each time, the robots that

are needed to be avoided by robot ri are the robots within ri’s sensing range, i.e.,

Oβi [k0] = {rj|‖xj[k0] − xi[k0]‖2 ≤ L}. To avoid collisions with other robots, ri first

needs to retrieve the current states of the robots in Oβi [k0] and predict their future posi-

tions. Some work deals with the prediction by increasing the shapes of robots according

to their maximal speeds and initial positions [198]. However, this is too conservative

to forbid some feasible space. Here, we introduce a linear prediction method. Suppose

the current position and velocity of rj , rj ∈ Oβi [k0], are xj[k0] and vj[k0], respectively.

Thus, ri can predict the motion of rj to be uniform motion. In this way, rj’s future

positions predicted by ri are computed as follows.

x̃j[k] = xj[k0] + (k − k0)vj[k0]hi, ∀k ∈ Hi[k0] (4.12)

where hi is the discrete time step of ri. In this way, we can find that there is no need to

synchronize time discretization among robots.

Fig. 4.3 illustrates this idea for ri to avoid collisions with rj from the current time

k0. Hence, ri’s constraints for collision avoidance with the robots inOβi [k0] at k0 can be

described in (4.13).

∀rj ∈ Oβi [k0], ∀k ∈ Hi[k0],

‖xi[k]− x̃j[k]‖2 ≥ 2ρ.
(4.13)

With its own estimation of the neighboring robots, a robot can avoid the situation

that two robots move directly to each other, which will cause a deadlock. In fact, be-

cause of the uniform motion prediction of its neighbors, a robot regards the region

Chapter 4. Distributed Approach to Trajectory Planning 43

A robot r A spherical obstacle o1 A polygonal obstacle o2

(a) The Makowski sum of o1 and r, and o2 and r. (b) The c-obstacles of o1 and o2 built in our work.

ρ

ρ

ρ

ρ

ρ

ρ

FIG. 4.4: Comparison of c-obstacles built by our work and by Minkowski sum in 2D
space.

ahead of it as a collision region when it detects that another robot is moving directly to

it. Then it plans its own trajectory to deviate from its original direction. In this way, the

two robots will be separated before they are too close to change their directions. For

robots that cannot change their move directions, DES models can be applied to detect

and avoid deadlocks, which will be studied in the following chapters. Thus, collisions

and deadlocks can always be avoided. Besides, when all the configuration parameters of

the robots in a system are the same, by negotiating with its neighbors, a robot can avoid

the situation that two or more robots are computing collision-free trajectories simulta-

neously. Thus, livelocks, namely some robots keep moving but will never reach their

targets, can be avoided. Demonstrative examples will be illustrated in Section 4.5.3.

At last, we give the comparison to build the c-obstacles with Minkowski sum [14]

and with our method, which is shown in Fig. 4.4. In Fig. 4.4, the first row shows

the original models of a robot, a spherical obstacle, and a polygonal obstacle in the 2D

space, respectively; Fig. 4.4(a) gives the Minkowski sum of o1 and r, and o2 and r,

respectively; and Fig. 4.4(b) shows the c-obstacles constructed in our work. Clearly,

our method can keep the regular shapes of obstacles.

Chapter 4. Distributed Approach to Trajectory Planning 44

In conclusion, for any robot ri, i ∈ IN , its local optimization problem at instant k0,

denoted as Pi[k0], can be described as follows.

(Pi[k0])

min
ai[k0:Ti−1]

f iobj

subject to (4.4)−(4.7), (4.10), (4.11), and (4.13).

Remark 2. In each sub-problem Pi[k0], the collision avoidance constraints can be divid-

ed into k0,Hi
− k0 kinds. The q-th kind of constraints are the constraints that position

pi[k0 + q] should satisfy. It mandates the following constraints: ‖xi[k0 + q] − xo‖2 ≥
ρo + ρ for all o ∈ Oα1

i [k0], xi[k0 + q] /∈ {x|Aox < bo + ‖Ao‖•ρ} for all o ∈ Oα2
i [k0],

and ‖xi[k0 + q]− x̃j[k0 + q]‖2 ≥ ρ for all rj ∈ Oβi [k0]. We say this kind of constraints

is with respect to xi[k].

4.3.3 Distributivity Analysis

In this subsection, we describe the distributed nature of the built optimization problem.

During the construction of Pi[k0], ri needs to search the environment within its sensing

range and communicate with the robots detected. For example, Fig. 4.5 gives a motion

planning framework of a multi-robot system with three robots. First, each robot has

its sensors to monitor the environment. In this scenario, r1 at x1 detects r2 is in its

sensing range, while r2 at x2 detects r1 and r3, and r3 at x3 detects r2. Second, a robot

communicates with the robots within its sight to build the local optimization problem.

r1 only needs to communicate with r2, and r3 also only needs to communicate with

r2, while r2 needs to communicate with r1 and r3. The communication among them

is described by the dashed arrows in Fig. 4.5. Third, the robot solves the optimization

subproblem and actuates its motion. It should also be able to broadcast its position and

velocity to its neighbors.

In Fig. 4.5, take r2 as an example to explain how a robot can plan its trajectory only

with some communication with other robots. First, r2 searches for obstacles in the envi-

ronment within its sensing, i.e., the region bounded by the middle circle. Since it finds

r1 and r3, r2 sends requests to communicate with them and then receives their current

Chapter 4. Distributed Approach to Trajectory Planning 45

Sensor

Optimization
Problem P2

Actuator

Current State

Sensor

Optimization
Problem P1

Actuator

Current State

Sensor

Optimization
Problem P3

Actuator

Current State

Environment

r1

r2

r3

x1
x2

x3

1©

2©

1©

3©

FIG. 4.5: The framework of distributed trajectory planning for a multi-robot system.
x1 − x3 are the current positions of three robots, and the circles are the local environ-

ments detected by the corresponding robots.

positions and velocities. The process is represented by the dashed arrows marked by

“ 1©”. Second, using the received information, r2 constructs and solves its optimization

subproblem P2 individually. Third, the first predicted control signal is sent to the actua-

tor, and ri executes the corresponding move. During the move, if it receives the requests

for communication, r2 sends its current position and velocity to the senders, such as the

communication marked by “ 2©” and “ 3©” in Fig. 4.5.

Theorem 1. The proposed trajectory planning approach is of the minimal amount of

communication.

Proof. According to the framework, a robot first needs to detect the environment. This

process can be done independently for each robot. So there is no communication a-

mong robots. The second process is to communicate with the robots within its sensing

range. Such communication is to retrieve the current positions and velocities of other

robots. Note that for any algorithms, if we want to avoid collision with one robot, we

need at least the knowledge of its current position. Thus, such communication can-

not be avoided in order to be safe for any non-centralized approaches. After obtaining

such information, the robot can independently build its optimization problem, solve it,

and finally actuate its motion. There is no other communication for these operations.

In conclusion, the proposed trajectory planning method is of the minimum amount of

communication.

Chapter 4. Distributed Approach to Trajectory Planning 46

Indeed, the communication complexity isO(N), whereN is the number of robots in

the system. However, each time a robot only needs to communicate with robots within

its communication range.

4.4 Real-Time Trajectory Planning Algorithm

In the above section, we construct the distributed optimization programming for the

system at an arbitrary time instant. In this section, we describe the algorithm to solve

Problem 1.

The general principle of our MPC based real-time trajectory planning algorithm is

that: For an arbitrary robot ri, at the current time instant k0, it predicts its future control

signals, i.e., accelerations, on the current prediction horizon by solving its subproblem

Pi[k0]; then the first control signal is applied while others are discarded; when the sys-

tem reaches the next state, the horizon recedes to the next one and the future control

signals are regenerated from the updated optimization problem.

Usually, Pi[k0] is non-convex and thus it is hard to find a global optimal solution.

Fortunately, the theory of convex programming gives the inspiration to solve nonlinear

optimization problems approximately and efficiently. In this work, we solve the opti-

mization problems Pi[k0] via iSCP, which is an extension of the SCP method. This is

because compared with the SCP method, iSCP has higher probability to find a feasi-

ble trajectory during the approximate solving of the optimization problem [98]. The

procedure of iSCP contains the following steps.

Step 1 : Initialization. Set the initial values of xi[k0+1 : Ti], denoted as 0xi[k0+1 : Ti];

set the collision avoidance constraints to be empty; m = 0.

Step 2 : Search for the first position whose value violates the collision constraints; and

add the constraints with respect to this position into the optimization problem.

Note that these kinds of constraints will be always included in the future. Thus,

this position always satisfies the collision constraints at the following iterations.

Chapter 4. Distributed Approach to Trajectory Planning 47

Step 3 : Convexify the constraints to obtain an approximate convex problem and then

solve it. The solution is denoted as m+1xi[k0 + 1 : Ti].

Step 4 : If m+1xi[k0+1 : Ti] satisfies all collision constraints and ∀k ∈ {k0+1, . . . , Ti},
‖m+1xi[k] − mxi[k]‖∞ ≤ ε, stop and return m+1xi[k0 + 1],m+1vi[k0 + 1], and
m+1ai[k0]. Otherwise, m = m+ 1 and go back to Step 2.

4.4.1 Convexification of the Non-Convex Constraints

The main challenge of iSCP is to approximate the nonlinear problem Pi[k0] by a convex

problem at Step 3. In Pi[k0], the non-convex constraints are the inequalities of (4.10),

(4.11), and (4.13). So we need to convexify them. There are two forms of these in-

equality constraints, i.e., those given in the form of (4.10) or (4.13), and those given in

the form of (4.11).

At iteration m+ 1 of iSCP, using the first order Taylor approximation, the first form

can be approximated by the following formula.

(mxi[k]− x)T

‖mxi[k]− x‖2

(xi[k]− x) ≥ ρ′ (4.14)

where k ∈ Hi[k0], ρ′ = ρ+ρ0 and x = xo for (4.10), ρ′ = 2ρ and x = x̃j[k] for (4.13);

xi[k] is a linear combination of the optimal variables ai[k0],ai[k0 + 1], . . . ,ai[k − 1];
mxi[k] and x̃j[k], whose values are known at m + 1, are the solution to xi[k] at the

m-th iteration and ri’s prediction for the positions of rj , respectively. Indeed, since

function ‖x − x‖2 is a convex function, for any x and mx, we have ‖x − x‖2 ≥
‖mx − x‖2 + (mx−x)T

‖mx−x‖2 (x − mx) ≥ (mx−x)T (mx−x+x−mx)
‖mx−x‖2 = (mx−x)T

‖mx−x‖2 (x − x). This

means once (4.14) is satisfied, (4.10) and (4.13) are always satisfied. Hence, the trust

region for such an approximation is the whole space. Fig. 4.6 gives an example of a

convex feasible region of xi[k], i.e., the quadrilateral region, based on the above convex

approximation. In this case, robot ri at time k should avoid collisions with three robots

and a spherical obstacle.

Next, let’s consider the second one, i.e., the inequalities in the form of (4.11). Sup-

pose a polyhedral obstacle is represented as o = {x|Aox ≤ bo}, where Ao = (ATo,1, . . .,

Chapter 4. Distributed Approach to Trajectory Planning 48

mxi[k]

2ρ

x̃j1[k]

xi[k]

xo

ρ + ρo

x̃j2[k]

x̃j3[k]

2ρ

2ρ

FIG. 4.6: Robot ri’s approximate collision-free region for the future position xi[k] at
iteration m. The robot at this position should avoid three robots rj1 − rj3 and a static
spherical obstacle o. The quadrilateral region is the convexified configuration space of

xi[k]. Each boundary of this region is tangent to the corresponding circle.

ATo,z)
T and bo = (bo,1, . . ., bo,z)T . For such an obstacle, we can select one boundary as

the reference hyperplane, and guarantee that the feasible positions are on the other side

of the hyperplane with the safe distance ρ. Thus, the approximate convex set for (4.11)

can be described as follows.

ATo,z0xi[k] ≥ bo,z0 + ‖Ao,z0‖2ρ (4.15)

where z0, z0 ∈ {1, . . . , z}, is the index of the selected reference hyperplane.

There are many possible ways that can be applied to select the reference hyperplane

of the obstacle o = {x|Aox ≤ bo}. We give a heuristic approach considering the

physical limitations of robots and the avoidance of over-moving. The boundaries of

the polyhedral obstacle o, denoted as o1, . . . , oz, are described as oz′ = {x|ATo,z′x =

bo,z′}, z′ = 1, 2, . . . , z. The corresponding safe boundary of oz′ can be described as

{x|ATo,z′x = bo,z′ + ‖Ao,z′‖2ρ}. The selection procedure can be described as follows.

First, determine the hyperplane in front of it, say oz1 = {x|ATo,z1x = bo,z1}. Clearly,

xi[k0] satisfies ATo,z1xi[k0] ≥ bo,z1 + ‖Ao,z1‖2ρ. Second, search for the hyperplanes

that are adjacent to oz1 . Two hyperplanes are said to be adjacent if their intersection

is not empty. Third, among these adjacent hyperplanes, select one hyperplane, say

oz0 = {x|ATo,z0x = bo,z0}, such that (i) the obstacle o and ri’s current position are at

the same side of oz0 , and (ii) it is the closest boundary to the target position. Thus, oz0

becomes the reference hyperplane. Note that the adjacency of the selected hyperplane

Chapter 4. Distributed Approach to Trajectory Planning 49

xi[k0]

xi[k]

A1

A2

A3A4

A5

A6

Ax ≤ b

A3x ≥ b3 + ‖A3‖2ρxf
i

FIG. 4.7: The convexification of the polyhedral collision constraints. A1 − A6 are
the outward normal vectors of polyhedron o. The boundary with the outward normal
vector A3 is selected as the reference hyperplane based on our heuristic method. The
bottom-right region is the convex approximation of the collision avoidance for the fu-

ture position xi[k].

guarantees that the future position xi[k] cannot be too far away from xi[k0]; while the

different sides of xi[k] and xi[k0] can help to avoid over-moving.

For example, Fig. 4.7 shows an example of the convex approximation of a polyhe-

dral obstacle in the 2D space. The polyhedron is described as o = {x|ATz x ≤ bz, z =

1, . . . , 6}, where A1 − A6 are the outward normal vectors of the boundaries of the

polyhedron, and the corresponding boundaries are denoted as o1 − o6. At the current

time instant, the boundary in front of the robot is o2: AT2 x = b2 + ‖A2‖2ρ. Clearly,

AT2 xi[k0] ≥ b2 + ‖A2‖2ρ. Its adjacent hyperplanes are o1 and o3. For either one, the

obstacle and the current position are at the same side of the corresponding boundary.

However, o3 is selected as the reference plane since the target position is closer to the

safe boundary of o3. Thus, the approximate collision constraint for ri at xi[k] can be

described as:

AT3 xi[k] ≥ b3 + ‖A3‖2ρ.

The region is shown in Fig. 4.7 with the light blue region.

For the constraints that have been added at previous iterations, the approximated

convex feasible region is always non-empty. However, for the new added constraints

at iteration m + 1, the resulting convex feasible region may be empty based the above

approximation. For example, consider the situation shown in Fig. 4.8. Suppose the

current iteration is m+ 1, and the first position whose value violates some constraints is

Chapter 4. Distributed Approach to Trajectory Planning 50

x̃j2[k
′]

mxi[k
′]

x̃j1[k
′]

The feasible region of
xi[k] to avoid rj1

The feasible region of
xi[k] to avoid rj2

l1
l2

xj2[k
′]

mxi[k
′]

xj1[k
′]

mxi[k
′ − 1]

Feasible region for xi[k
′]

(a) No feasible approximate convex region for xi[k
′]. (b) The approximate convex region for xi[k

′].

FIG. 4.8: Convexification of a new added kind of collision avoidance constraints.

xi[k
′], where k′ ∈ Hi[k0]. Fig. 4.8(a) shows the convex approximation based on (4.14)

with the value mxi[k
′]. The region above l1 is the collision-free region with respect to

rj1 , and the region below l2 is the collision-free region with respect to rj2 . Since l1 is

parallel with l2, these two collision-free regions have no intersection. Thus, the feasible

region of the approximate problem at the current iteration is empty. A possible way

to avoid such a situation is to convexify the new non-convex constraints using the last

position that does not cause any collisions with other robots or obstacles, rather than
mxi[k

′]. For example, Fig. 4.8(b) shows an approximation with the value mxi[k
′ − 1].

Clearly, the convex approximation for this new added collision avoidance constraints

can be described in (4.16) and (4.17).

∀rj ∈ Oβi [k0],∀o ∈ Oα1
i [k0],

(xi[k
′]− x̃j[k

′])T (mxi[k
′−1]−x̃j [k′])

‖mxi[k′−1]−x̃j [k′]‖2 ≥ 2ρ, (4.16)

(xi[k
′]− xo[k0])T (mxi[k

′−1]−xo[k0])
‖mxi[k′−1]−xo[k0]‖2 ≥ ρ+ ρo. (4.17)

4.4.2 The Distributed Algorithm to Trajectory Planning

Applying (4.14)−(4.17), we can approximate all the non-convex constraints to be con-

vex. Thus, the local optimization problem Pi[k0] is approximated to be a convex one,

denoted as CVX Pi[k0]. The approximate convex problem can be efficiently solved by

some existing available software, such as CVX [199]. Algorithm 1 shows the detailed

algorithm for ri to solve the optimization subproblem at k0.

Chapter 4. Distributed Approach to Trajectory Planning 51

Algorithm 1: iSCP for robot ri at time instant k0: iSCP (ri, k0, Pi[k0]).

Input : Current position xi[k0] and velocity vi[k0], target position xfi , prediction
horizon Hi, detected obstacles Oαi [k0], observed robots Oβi [k0] and their
current positions, the accuracy ε, and maximal iterations mmax.

Output: The predicted acceleration ai[k0], velocity vi[k0 + 1], and position
xi[k0 + 1].

1 Initialization: initial values 0xi(k0 + 1 : Ti); m = 0; and PosiIndex = ∅;
2 while m ≤ mmax do
3 CurConstr = ∅, HasAdded = false;
4 for k = k0 + 1 to k0,Hi

do
5 if k ∈ PosiIndex then

/* Convexify the constraints which have been
considered at the previous iterations. */

6 CVXConstr = ApproxCV X(mxi[k],O) ;
7 CurConstr = CurConstr ∪ CVXConstr;
8 else if (!HasAdded) ∧ (mxi[k] ∈ O) then

/* New constraints with respect to xi[k] are
added. */

9 HasAdded = true ;
10 PosiIndex = PosiIndex ∪ {k};
11 CVXConstr = ApproxCV X(mxi[k

′ − 1],O) ;
/* Convexify the constraints with mxi[k

′ − 1]
(mxi[k′ − 1] /∈ O), instead of mxi[k]. */

12 CurConstr = CurConstr ∪ CVXConstr;

13 CV X Pi[k0] = Approx(Pi[k0], CurConstr) ;
14 (aa,vv,xx) = Solve(CVX Pi[k0]);
15 m+1xi[k0 + 1 : Ti] = xx;
16 if max

k
‖m+1xi[k]− mxi[k]‖∞ ≤ ε then

17 ai[k0] = aa[1], vi[k0 + 1] = vv[1], and xi[k0 + 1] = xx[1];
18 return;

19 m = m+ 1;

20 if m > mmax then
21 Report false and act some emergent actions, such as an emergency brake.

In this algorithm, the variable PosiIndex collects the indexes of positions whose

corresponding collision avoidance constraints have been taken into consideration at the

previous iterations; CurConstr is the set of the convex approximations of the con-

straints that have been added into the problem; HasAdded is a boolean variable that

denotes whether a new position is added into consideration at the current iteration: If

yes, its value is true. The index of a new violated position at the current iteration can

Chapter 4. Distributed Approach to Trajectory Planning 52

Algorithm 2: The distributed trajectory planning approach for robot ri.
Input : Current time instant k0 and the current position xi[k0] and velocity

vi[k0], target position xfi , discrete time step h and the final time instant
T , and the prediction horizon Hi, and the sensing range L.

Output: Robot ri moves to its target without causing collisions.

1 Detect the current local environment, and determine the sets of obstacles Oαi and
robots Oβi within its sensing range;

2 Locate the obstacles;
3 Communicate with the robots in Oβi and determine their current positions;
4 Construct the distributed optimization sub-problem Pi;
5 Call iSCP (ri, k0, Pi) (i.e., Algorithm 1) to solve Pi ;
6 Return ai[k0], vi[k0 + 1], and xi[k0 + 1];
7 Actuate the robot with the control signal ai[k0];
8 Update the current time and state;

be added to PosiIndex only when HasAdded = false, i.e., the condition described

in Line 8. Once a new violated position is detected, HasAdded = true, i.e., Line

9. O = Oαi [k0] ∪ Oβi [k0] is the observed obstacles at the current time instant k0; the

function ApproxCV X(mxi[k],O) in Line 6 is used to convexify the collision avoid-

ance constraints with the value mxi[k] based on (4.14) and (4.15), while that in Line

11 is used to convexify the new added collision avoidance constraints with the value
mxi[k

′ − 1] based on (4.16) and (4.17). The approximate convex problem is denoted as

CVX Pi[k0]. The function Solve(CVX Pi[k0]) solves the approximate convex prob-

lem and returns the sequences of accelerations aa, velocities vv, and positions xx,

where aa, vv, and xx are the predicted values of ai[k0 : Ti − 1], v[k0 + 1 : Ti], and

xi[k0 + 1 : Ti] in the current horizon, respectively.

At last, the fully distributed algorithm for real-time motion planning is shown in

Algorithm 2. The main time cost of the algorithm is to solve the optimization problem,

i.e., Line 5 in Algorithm 2. Based on Algorithm 1, to solve it is to solve a set of

approximate convex problems. Fortunately, each convex optimization problem can be

solved in polynomial time [196]. Thus, each robot at each time instant can predict its

trajectory in polynomial time if any.

Each trajectory generated by the proposed method only guarantees collision avoid-

ance at the discrete positions, rather than the whole one. But it can be resolved by

increasing the given safe radius with a proper value [103]. Take a circular obstacle as

Chapter 4. Distributed Approach to Trajectory Planning 53

o

vm

ai[k]

ρ

d

ρe

vi[k + 1]
l

φ

FIG. 4.9: The minimum distance between a robot and an obstacle in [k, k + 1].

an illustrative example. Indeed, at any time instant k, the acceleration between the in-

stants k and k + 1 is a constant. Thus, the minimum distance between the robot and an

obstacle between k and k + 1 happens when the two positions are at the boundary of

the c-obstacle, which is shown in Fig. 4.9. In this case, the minimum distance between

the robot and the obstacle is affected by the acceleration which is perpendicular to the

line of the two successive positions of the robot. Thus, we have vm cosφ = ai[k]hi/2,

d = hivm cosφ/4, and l = hivm sinφ, where vm is the maximum speed. Then,

ρ2
e =

l2

4
+ (ρ+ d)2

=
h2

1v
2
m[k] sin2 φ

4
+ (ρ+

hivm cosφ

4
)2

= − 3

16
h2
i v

2
m cos2 φ+

ρhivm
2

cosφ+ ρ2 +
1

4
h2
i v

2
m

= − 3

16
(hivm cosφ− 4

3
ρ)2 +

4

3
ρ2 +

1

4
h2
i v

2
m

Clearly, ρe ≤
È

4
3
ρ2 + 1

4
h2
i v

2
m. This can give us guidance to set the safe radius.

4.5 Simulated Cases: Implementation and Results

In this section, we use two examples to demonstrate the proposed algorithm. Without

loss of generality, both are considered in a 2D space. In the first situation, a robot

is moving in a dynamic environment where an obstacle will be placed and removed

unexpectedly. The robot does not know in advance the global environment, as well as

the information of the occurrence of obstacles. Thus, for the robot, the environment

Chapter 4. Distributed Approach to Trajectory Planning 54

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Rectangular Obstacle

Target Position

Initial Position

o
1

o
2

o
3

o
4

o
5

x
0

x
f

FIG. 4.10: The environment of Case 1. There are four static obstacles, i.e., o1 − o4,
one removable obstacle o5, and one rectangular obstacle. Each circle represents the

corresponding c-obstacle.

is dynamic and unpredictable. In the second situation, a system with four robots is

studied. In this scenario, each robot regards others as dynamic obstacles. In this sense,

the environment is also a changing one. In our experiments, the convex problems are

solved by CVX 2.1 with the default solver SDPT3 [199].

4.5.1 Case 1: One Robot in a Multi-Obstacle Environment

In this case, the parameters and running environment are set as follows. The time in-

terval is discretized into T = 30 time instants with a time step h = 0.1; the prediction

horizon is set as H = 10; and the sensing range is set as L = 0.65. The safe radius

of each robot in the c-configuration space is ρ = 0.16, and the maximum velocity is

vmax = 5. However, at the computation phase, the safe radius is enlarged to 0.2 to avoid

collisions on the trajectory segments between every two successive time instants. The

environment is shown in Fig. 4.10. x0 and xf are the initial and target positions, respec-

tively. Their coordinates are (5, 5) and (2, 2.5). The static obstacles in the environment

are four circular obstacles and one rectangular obstacle. The corner of the rectangular

obstacle is (4, 3) and is a known obstacle at the beginning; while the coordinates of the

circular obstacles are shown in Table 4.2. Obstacle o5 is an obstacle that is placed to

(4.5, 3.5) at time instant k0 = 8 and is taken away at k0 = 11.

Chapter 4. Distributed Approach to Trajectory Planning 55

TABLE 4.2: Obstacle Positions in the Environment

Obstacle o1 o2 o3 o4 o5

Position (4.5, 4) (5, 3) (3.5, 2.6) (3, 2) (4.5, 3.5)

TABLE 4.3: Obstacles that Are Detected at Different Time Instants

Time Instant(s) Obstacle(s)
6, 7 o1

8, 9, 10 o1, o5

11 o1, o2

12, 13, 14, 15,16 o2

19, 20, 21, 22 o3

23, 24 o3, o4

25, 26 o4

Based on our method, at each discrete time instant, a robot builds a new optimiza-

tion problem based on the current detected environment. Due to their similarity, it is

not necessary to show the equations at all time instants. Rather, the equations at an

arbitrary time instant are informative enough to represent others. Hence, we show the

optimization problem at k0 = 8, i.e., Pi[8]. Since there is only one robot, we omit the

subscript index for the sake of clarity.

min
a[8:29]

17∑

k=8

‖a[k]‖2
2 +

29∑

k=18

‖a[k]‖2
2

subject to:

x[k + 1] = x[k] + 0.1 ∗ v[k] + 0.01 ∗ a[k]

2
,

v[k + 1] = v[k] + 0.1 ∗ a[k],

‖v[k]‖2 ∈ [0, 5], ‖x[j]− xo1‖2 ≥ 0.2, ‖x[j]− xo5‖2 ≥ 0.2,

x[j] /∈ {(x, y)|x < 4 + 0.2, y > 3− 0.2};

x[8] = (4.7086, 4.0467),v[8] = (−0.6935,−2.0673),

x[30] = (2, 2.5),v[30] = (0, 0),xo1 = (4.5, 4),xo5 = (4.5, 3.5);

∀k ∈ {8, 9, . . . , 29},∀j ∈ {9, 10, . . . , 18}.

To describe the affine approximation of the approved violated non-convex constrains

at each iteration during the iSCP process, let x[j] = (x[j], y[j]). Then the approxima-

tion of ‖x[j] − xo1‖2 ≥ 0.2 at iteration m with mx[j] = (mx,m y) can be described

Chapter 4. Distributed Approach to Trajectory Planning 56

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

o
1

o
2

o
3

o
4

o
5
 o

5
 o

5

k
0
=11

k
0
=8

FIG. 4.11: The generated path. The red part is the path where obstacle o5 is placed in
the environment.

as:

(mx− 4.5)x[j] + (my − 4)y[j]

≥ 4.5 ∗ (mx− 4.5) + 4 ∗ (my − 4) + 0.2 ∗
È

(mx− 4.5)2 + (my − 4)2.

Similarly, the approximation of ‖x[j]− xo5‖2 ≥ 0.2 can be described as:

(mx− 4.5)x[j] + (my − 3.5)y[j]

≥ 4.5 ∗ (mx− 4.5) + 3.5 ∗ (my − 3.5) + 0.2 ∗
È

(mx− 4.5)2 + (my − 3.5)2.

For the rectangular obstacle, the constraint x[j] /∈ {(x, y)|x < 4 + 0.2, y > 3− 0.2} is

approximated as y[j] ≤ 2.8.

Based on the above implementation, the traversed path of the robot is shown in Fig.

4.11, and the observed obstacles during the motion are shown in Table 4.3. In Fig. 4.11,

the red part of the path is the path passed through with the existence of o5. We can

find that the robot moves away from the original orientation to the target because of the

sudden observation of o5 at the time instants 8−11. Detailedly, during the move among

these time instants, to avoid collision with o5, the robot needs to make a turn, causing a

jink on the path. When the obstacle o5 disappears at k0 = 11, the robot begins to move

towards the target.

Fig. 4.12 shows some snapshots of the real-time trajectories at different time in-

stants. As shown in Fig. 4.12(a), at k0 = 6, there is only one obstacle o1 within the

robot’s sensing range. So the local trajectory in the prediction horizon only needs to

Chapter 4. Distributed Approach to Trajectory Planning 57

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

o
1

o
2

o
3

o
4

k
0
 = 6

(a) k0 = 6 and Oi[k0]
= {o1}.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

o
1

o
2

o
3

o
4

o
5

k
0
 = 8

(b) k0 = 8 and Oi[k0]
= {o1, o5}.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

o
1

o
2

o
3

o
4

o
5

k
0
 = 11

(c) k0 = 11 and
Oi[k0] = {o1, o2} with
the move of o5.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

o
1

o
2

o
3

o
4

o
5

k
0
 = 12

(d) k0 = 12 and Oi[k0]
= {o2}.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

o
1

o
2

o
3

o
4

o
5

k
0
 = 20

(e) k0 = 20 and Oi[k0]
= {o3}.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

o
1

o
2

o
3

o
4

o
5

k
0
 = 23

(f) k0 = 23 and Oi[k0]
= {o3, o4}.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

o
1

o
2

o
3

o
4

o
5

k
0
 = 25

(g) k0 = 25 and Oi[k0]
= {o4}.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

o
1

o
2

o
3

o
4

o
5

k
0
 = 27

(h) k0 = 27 and Oi[k0]
= ∅.

FIG. 4.12: The traversed and predicted trajectory in different prediction horizon. The
solid circles represent the forbidden regions of the corresponding circular obstacles
o1 − o4. The dashed circle in each sub-figure represents the boundary of the sensor.
The curves with star dots are the pathes that have been traversed by the robot, while

the cross dots represent the predicted positions of the prediction horizon.

avoid collision with o1. When k0 = 8, a new obstacle o5 is placed into its sensing

range, so the current obstacles are o1 and o5 (also shown in Table 4.3). As shown in Fig.

4.12(b), this causes the trajectory to deviate from the original direction. Since o5 is tak-

en away at time instant 11, there are only two obstacles, o1 and o2, detected at k0 = 11

and shown in Fig. 4.12(c). At k0 = 12, obstacle o1 is no longer in the range of the robot.

So the observed obstacle is o2, which is shown in Fig. 4.12(d). Note that the predicted

trajectory is only required to avoid collisions the robot detects, so it is available even

though the trajectory in the current horizon collides with another obstacle o3. The same

analysis can be done for Figs. 4.12(e)−4.12(h).

4.5.2 Case 2: Multiple Robots in an Obstacle-Free Environment

In this subsection, we consider the implementation of our approach in a multi-robot

system which is executed in an obstacle-free environment. As shown in Fig. 4.13, there

are four robots, say r1−r4, in the system. Their initial positions are (1, 1), (6, 1), (6, 6),

Chapter 4. Distributed Approach to Trajectory Planning 58

FIG. 4.13: A simulation multi-robot system with 4 robots. Robots r1 and r3 are re-
quired to exchange their positions, and r2 and r4 are required to exchange the positions.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Robot 2

Robot 1

Robot 3

Robot 4

FIG. 4.14: The paths traversed by the four robots.

and (1, 6), respectively. The tasks are that r1 − r4 need to move to the initial positions

of r3, r4, r1, and r2, respectively.

The parameters of this case study are set as follows. Ti = 60, Hi = 15, hi = 0.1,

‖vi‖2 ≤
√

3, where i = 1, . . . , 4; ρ = 0.35, and L = 2. Note that each robot can

start individually at any time. In our case, we suppose the four robots start sequentially

but with very short delays. Fig. 4.14 shows the paths that the four robots traverse.

At the beginning of its motion, each robot moves directly to its target since there are

no obstacles detected. When the robots move towards others, they deviate from the

original directions in order to avoid collisions with each other. From the paths, we can

find that to pass through the intersection area without any collisions, each robot deviates

to the left of its motion with proper negotiations. Indeed, such motion of these robots is

analogous to the movement within a roundabout in the traffic systems.

Chapter 4. Distributed Approach to Trajectory Planning 59

Robot 2 Robot 1

Target 1 Target 2

(a) Example 1.

Robot 2 Robot 1

Target 1 Target 2

(b) Example 2.

FIG. 4.15: Illustrative examples for livelock avoidance.

4.5.3 Case 3: Multiple Robots with Symmetric Trajectories

In our method, at each time instant, each robot will re-search for its neighbors and

re-predict its neighbors’ positions. Once a collision is found, a robot will plan a new

collision-free trajectory. Thus, if two robots are moving directly to each other, they

would change their directions in advance to avoid deadlocks. After it passes through

the collision regions, a robot will plan the new trajectory to the target position.

Note that for a distributed method, we do not mean that there are no negotiations

among robots. Indeed, for any decentralized or distributed method, negotiations are

inevitable in order to avoid synchronous moves. In our method, robots may also need

negotiations to avoid livelocks. A livelock is a situation that some robots keep moving

but will never reach their targets. It may arise because all the configuration parameters

of these robots are the same, and at each instant, they are computing the collision-free

trajectories and updating positions simultaneously. This means that their trajectories are

always symmetric. However, with negotiations, these robots can determine a solution to

avoid livelocks. Note that the prediction methods of other robots’ motion do not affect

the negotiation process.

Consider two systems shown in Fig. 4.15. Assume that the safe radius is 0.35. In

Fig. 4.15(a), the two robots are at (6, 1) and (1, 1). They need to move to (1, 6) and

(6, 6), respectively. At the beginning, the trajectories are symmetric. When they are near

the intersecting point O, they will negotiate with each other to avoid the simultaneous

computation and execution for collision avoidance. Thus, the generated result is that

they move in a coordinated manner. Their traversed paths are shown in Fig. 4.16(a). In

Fig. 4.15(b), the initial positions of the two robots are (5, 1.9) and (2, 2.1), respectively;

Chapter 4. Distributed Approach to Trajectory Planning 60

1 2 3 4 5 6

1

2

3

4

5

6

O

Robot 2 Robot 1

Target 2Target 1

(a) Paths for example 1.

0 1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

3.5

Robot 2
Robot 1

(b) Paths for example 2.

FIG. 4.16: The generated paths without any livelock.

the targets are (0, 2) and (7, 2), respectively. The boundaries of environment are y ≤ 3

and y ≥ 1. Similarly, the generated paths are shown in Fig. 4.16(b).

The video of the three simulations can be found at https://youtu.be/8kYI_

DueEH8.

4.6 Discussion

This section gives more discussions on the proposed method.

First, the proposed method can deal with both holonomic and nonholonomic kine-

matics. The difference between holonomic and nonholonimic kinematics is that the

holonomic kinematics only consider the constraints on positions, while the nonholo-

nomic kinematics consider the constraints containing velocities and other derivatives of

positions. Since we do not restrict the constraints in order to construct the optimization

problem for each robot, our method can deal with different kinematics. Besides, the

proposed method can be used in both 2D and 3D scenarios. The main difference is

the number of control variables. Our method does not limit the number of variables.

However, we must point out the number of variables will affect the computation cost.

Second, the proposed method is suitable for different environments, especially for

dynamic environments and the environments without priori knowledge. Indeed, with

the MPC strategy, each robot can update its detection information, based on which the

robot can replan its trajectory to fit the new environment.

https://youtu.be/8kYI_DueEH8
https://youtu.be/8kYI_DueEH8

Chapter 4. Distributed Approach to Trajectory Planning 61

Third, the proposed method is suitable for the situations that each robot can freely

plan its trajectory in the environment. However, by adding corresponding constraints,

the proposed method can also be applied for the situation that some robots are required

to move along some reference paths in some areas. Because of the classical physical

laws, the generated path by each robot is a continuously differential curve. Thus, for

partial differential reference paths, some preprocessing procedures may be needed to

smooth the paths. For example, we can use a proper tangent arc of the path to smooth a

non-differential point in the reference path.

At last, the proposed method focuses on the robots that can always work well. How-

ever, it is also suitable for the systems containing robots that may fail at any time. In

this case, other robots can still plan their trajectories only by regarding the failed ones

as static obstacles.

4.7 Conclusion

We, in this chapter, propose a real-time and fully distributed algorithm to plan trajec-

tories for multi-robot systems without the priori knowledge of the environment. The

proposed method is a combination of the MPC strategy, which is a general framework

to solve problems real-timely in the time domain, and iSCP, which is an efficient method

used to solve the non-convex optimization subproblems. To construct its optimization

subproblem in each prediction horizon, a robot needs to know the positions of the ob-

stacles and the current states of other robots within its sensing range. We also prove that

such knowledge can be obtained with the minimal amount of communication. With the

information of current states of its neighbors, a robot first predicts the possible future

positions of others, and then builds constraints to avoid collisions with them. Since it

predicts the motion of others by itself, a robot does not need to wait for the computation

of other robots. Thus, each robot can compute its trajectories and update its position

independently with the retrieved information. So the approach we proposed is fully

distributed. The computation complexity of the proposed method is polynomial time.

Chapter 5

Discrete Modeling of Robot Motion in

Multi-Robot Systems with Fixed Paths

In Chapter 4, we study a distributed approach to trajectory planning of multi-robot

systems where each robot can change its path freely. When these paths are recorded, the

future robots may move following these fixed paths due to similar objectives and tasks.

Moreover, because of the limitations of the environment or infrastructure, a robot has to

move along a predetermined path. In these scenarios, each robot in a multi-robot system

has a predetermined path. Thus, not only collisions but also deadlocks may occur during

robot motion. In the sequel, we focus on motion control of such systems. By assuming

proper local continuous controllers are available for robots, we study motion control

problems from the theory of discrete event systems (DESs). In this chapter, we first

give the discrete model for the motion of such a system, and in the next three chapters,

we study some detailed motion control problems based on this discrete model.

5.1 Introduction

Many the state-of-the-art motion planning methods are for multi-robot systems where

robots are moving in a free environment and can change their paths freely if needed.

However, in some scenarios, especially in transportation systems, warehouses, tourist

62

Chapter 5. Discrete Abstraction 63

areas, and public parks, a robot may have to move along a fixed path due to infras-

tructure limitations, task requirements, and so on. For example, different autonomous

vehicles may be required to move along different lines to monitor the traffic conditions

persistently; robots in warehouses are required to continually load and unload materials

or products in the given lines; and cars in tourist areas run in circles to carry tourists.

In these examples, robots are required to move along predetermined paths to perfor-

m given tasks. Moreover, with the state-of-the-art path planning algorithms, we may

first obtain paths accommodating infrastructure limitation [17] and special task require-

ments [25, 200, 201], and then fix robots to move along these special paths. In these

systems, we always need to make sure that there are no environmental obstacles on the

paths.

Since it can be an arbitrary curve, sometimes the path of a robot cannot be de-

scribed as a closed-form expression. As an alternative, discrete representation is an

alternative to reduce the computational complexity significantly [54]. Indeed, to model

the complex control system in a way that facilitates the analysis and verification of it-

s performance, it is common to model a system at different levels of abstraction, from

high-level discrete control to low-level continuous control [107,130,202]. For example,

in [130], by abstracting disjoint collision zones, Soltero et al study collision and dead-

lock avoidance in multi-robot systems where robots have intersecting paths. Then some

optimal policies are designed to determine the sequence of robots entering a collision

zone. Reveliotis et al [162, 203] study the motion planning problem from the resource

allocation paradigm, where the motion space is discretized into a set of cells. Regarding

these cells as resources, each robot decides which resources it needs at different zones.

In this chapter, using labeled transition system (LTS) model, we specify formally the

motion of a robot along a given path by discretizing its path. In the rest of this chapter,

Section 5.2 describes the determination of collision segments of a path; Sections 5.3

and 5.4 describe the building of the discrete state space of a robot and its LTS model,

respectively; and finally Section 5.5 gives some discussion on the discrete abstraction

of robot motion.

Chapter 5. Discrete Abstraction 64

5.2 Determination of Collision Segments

Given a system with N robots, suppose each robot has a predetermined and closed path

pi(θ) (sometimes simply denoted as pi), i ∈ IN = {1, 2, . . . , N}. A segment of pi is a

continuous part of the path pi and can be described as pik = {pi(θ)|θ ∈ [θ1, θ2], θ1, θ2 ∈
[0, 1]}. pi(θ1) is called tail of pik and pi(θ2) is head of pik. Given two segments pik and

pjk′ , their distance can be computed as d(pik, p
j
k′) = infx∈pik,y∈p

j

k′
d(x, y).

Definition 6 (Robot Motion). The motion of ri along pi is a binary relation→pi on pi,

i.e.,→pi ⊂ pi × pi: ∀x, y ∈ pi, (x, y) ∈→pi , denoted as x→pi y, if ri can move from x

to y along pi.

Since pi is a closed path and ri is doing persist motion, we have:

• ∀x ∈ pi, (x, x) ∈→pi . This means that for any position x on pi, ri can move back to

x, i.e., ri moves along pi for one round.

• (x, y) ∈→pi ⇒ (y, x) ∈→pi . It means that if a robot can move from x to y, then it

can move from y to x. Their traversed paths form the whole pi.

• (x, y) ∈→pi and (y, z) ∈→pi ⇒ (x, z) ∈→pi . This means if ri can move from x to

y, and y to z, then it can definitely move from x to z.

For the sake of safety, each robot has a safe radius, say ρ, during its motion. In terms

of safe radius, the real footprints of a robot can be regarded as a sphere with a radius ρ.

Thus, two robots are in a collision if d(x0, y0) < 2ρ, where x0 and y0 are their positions.

Hence, the safe region for ri’s motion at position x0 is sphere ‖x−x0‖2 ≤ 2ρ, meaning

that other robots cannot be in this sphere at that time; the whole safe region for ri can

be described as Ai2ρ = {x ∈ Rn0|‖x − pi(θ)‖2 ≤ 2ρ, θ ∈ [0, 1]}. Clearly, ri’s collision

locations with rj is pi(j) = pi ∩ Aj2ρ.

For example, Fig. 5.1 shows an example of safe regions of robots in a 2D case. The

two solid circles, whose radii are ρ, show the footprints of robots in term of safe radius.

The dashed circle with a radius 2ρ is the safe region of ri when it is at x0. Other robots,

such as robot r, cannot move into this region at that time; otherwise, a collision occurs

due to the intersecting of their footprints. The red and blue solid curves are segments of

Chapter 5. Discrete Abstraction 65

x0

2ρ

ρ
2ρ

2ρ
2ρ

pi

pj

ca b

d

e

pir

pil

pjr pjl

r

FIG. 5.1: An example to show safe regions of robots in 2D motion space. Solid circles
at the left are the real motion space with a safe radius ρ, the dashed circle at x0 is the
safe region of ri when it is at x. Solid curves pi and pj are the paths of ri and rj . Their

safe regions are bounded by the parallel boundaries 〈pil, pir〉 and 〈pjl , p
j
r〉.

pi

pj

pjr

pjl pir pilpi

pj

a

b

c

d e

f

g

h

a

b

c

d
e

f

g

h

2ρ

2ρ

FIG. 5.2: An example to illustrate the maximal continuous segments.

pi and pj , respectively. The dashed curves pil and pir are the boundaries of Ai2ρ, and pjl

and pjr are boundaries of Aj2ρ. Hence, the segmentöacb is a segment in pi(j) andödce is

in pj(i). Here a and b are tail and head oföacb, respectively. Note that each sub-segment

oföacb is also a segment in pi(j).

Definition 7. A segment pik is called a collision segment with rj on pi if pik is a maximal

continuous segment in pi(j). The set of collision segments with rj is denoted as P i,j .

Remark 3. Note that the segments in pi(j) is infinite. So, in the above definition, we

only consider the maximal continuous segments. For example, as shown in Fig. 5.2,

even thoughùagbhc can be divided into two parts öagb andöbhc, such that öagb may cause

collisions only when rj is at÷dge and öbhc may cause collisions only when rj is at÷ehf ,

one of the collision segments with rj on pi is ùagbhc but not öagb and öbhc. Similarly,údgehf is a collision segment with ri on pj .

Chapter 5. Discrete Abstraction 66

p2 p3

p1

p2 p3

p1

p2
p3

p1

p2 p3

p1
(a) Segments that may collide with r1. (b) Segments that may collide with r2.

(c) Segments that may collide with r3. (d) Final collision segments.

P 2
1

P 2
2

P 1
1

P 1
2

P 3
1

P 3
2

P 3
3

p21
p31

p32
p33

p11

p22

p23

p34

p12

p23

FIG. 5.3: An example to show collisions among multiple robots.

Fig. 5.3 shows an example of collision segments among three robots in a multi-

robot system. Similarly, the solid circles denote robots’ paths pi, and the dashed circles

denote the boundaries of Ai2ρ. Fig. 5.3(a) shows r2’s and r3’s collision segments, i.e.,

the blue bold segments, with r1. Fig. 5.3(b) shows the collision segments of r1 and r3

with r2, i.e., the black bold segments; and Fig. 5.3(c) shows the collision segments of

r1 and r2 with r3, i.e., the red bold segments. Note that in Fig. 5.3(b), the overlapped

segment of the blue and black bold segments on p3, i.e., p3
1 and p3

3, means that r3 may

collide with r1 and r2 simultaneously if it is at this part, so do the overlapped parts of

p2
1 and p2

2, and p1
1 and p1

2.

Indeed, by searching for its path, each robot can determine its collision segments

with others independently. First, using its vision and distance sensors, a robot can detect

the paths of other robots. For each path ahead, the robot can determine its maximal

continuous segment such that the minimal distance of each point to the detected path

is less than 2ρ. For example, as shown in Fig. 5.4, searching for its path p2, r2 detects

that a is the first point from which the distance to p1 is less than 2ρ, and b is the last

point whose distance to p1 is less than 2ρ. Thus, segment ôab, the bold blue curve, is a

collision segment with r1 on p2. Similarly, ôcd is a collision segment with r3 on p2.

Chapter 5. Discrete Abstraction 67

p2

p3

p1

a

b

c

d
r2

2ρ

2ρ

2ρ

2ρ

FIG. 5.4: An example to show the detection of collision segments by a robot.

Once a robot determines its collision segments with other robots, to simplify the

analysis, it merges the overlapped segments. Thus, the set of the final non-overlapped

collision segments is P i = ∪jP i,j , {P i
1, P

i
2, . . .} with overlapped merging. For exam-

ple, p3
1 and p3

3 in Fig. 5.3 are merged into P 3
1 , shown in Fig. 5.3(d); p2

1 and p2
2 are merged

into P 2
1 ; and p1

1 and p1
2 are merged into P 1

1 . Hence, as shown in Fig. 5.3(d), after merg-

ing, the collision segments of r1, r2, and r3 are {P 1
1 , P

1
2 }, {P 2

1 , P
2
2 }, and {P 3

1 , P
3
2 , P

3
3 },

respectively. In the following, without ambiguity, a collision segment means a final

non-overlapped collision segment.

Definition 8. (P i
k, P

j
k′) is a collision pair between pi and pj if P i

k and P j
k′ are their colli-

sion segments, and d(P i
k, P

j
k′) < 2ρ.

For example, as the example shown in Fig. 5.3(d), their collision pairs are: (P 2
1 , P

1
1),

(P 3
1 , P

2
1), (P 1

1 , P
3
1), (P 3

3 , P
1
2), and (P 3

2 , P
2
2).

Proposition 1. Collisions between ri and rj can only occur in their collision pairs.

Proof. Suppose ri and rj are in a collision when they are at x0 and y0. Then there

exist P i
k and P j

k′ such that x0 ∈ P i
k and y0 ∈ P j

k′ . Since d(P i
k, P

j
k′) ≤ d(x0, y0) < 2ρ,

(P i
k, P

j
k′) is a collision pair.

5.3 Abstraction of Discrete States

In this section, we describe the process to build the discrete state space of each robot.

Consider robot ri’s path pi.

When collision segments are determined, the rest of pi, i.e., pi \ P i, is always

collision-free. Each maximal continuous segment in pi \ P i may be further partitioned

Chapter 5. Discrete Abstraction 68

p2
p3

p1

a

b

c
de

f

g

h
k

s1

s2

s3s4

s5

s6

s7

s8
s9

FIG. 5.5: An example to show discretization of a path.

into a set of smaller segments based on some parameters such as sensing ranges. Such

a smaller segment is called a private segment. In this way, pi is finally partitioned

into a set of segments, which can be classified into two kinds: collision segments in

P i and private segments in pi \ P i. We denote such segments as P i
d = {P i

k, k = 1,

2, . . ., ni}. Here we assume that each P i
k includes its head but excludes its tail, i.e.,

P i
k = {pi(θ)|θ ∈ (θk,1, θk,2]}. So P i

k1
∩ P i

k2
= ∅ for k1 6= k2. For example, as shown

in Fig. 5.5, the collision segments are (a, b] and (c, d]. Here the notation (a, b] means

the directed arc ôab excluding a but including b. The directed arc (d, a] is divided into a

set of smaller segments: (d, e], (e, f], (f, g], (g, h], (h, k], and (k, a]. Hence, we have

P 2
d = {(a, b], (b, c], (c, d], (d, e], (e, f], (f, g], (g, h], (h, k], (k, a]}.

Based on above segments, we first define a binary relation ≡d:

Definition 9. For any two points x and y on pi, x ≡d y if and only if ∃k such that x ∈ P i
k

and y ∈ P i
k.

Clearly,≡d is an equivalence relation and each P i
k, k = 1, 2, . . ., ni, is an equivalence

class. So all P i
k form a partition of pi. By abstracting each equivalence class P i

k as a

discrete state sik, we can obtain a discrete state space of ri, denoted as Si. Note that the

segments in a collision pair (P i
k, P

j
k′) are defined as the same discrete state. For example,

as shown in Fig. 5.3(d), P 1
1 , P 2

1 , and P 3
1 are abstracted as the same discrete state. In the

discrete form, we say a robot is at a state sik if its current position x0 ∈ P i
k. Hence, Si can

be classified into collision states Siα, which are from segments in P i, and private states

Siβ , which are from segments in pi \ P i. For example, the discretization of p2 shown in

Fig. 5.5 contains 9 equivalence classes, i.e., the segments in P 2
d . Each is then abstracted

Chapter 5. Discrete Abstraction 69

to a discrete state. Hence S2 = {s1, s2, . . . , s9}, where s1 corresponds to (a, b], s2 to

(b, c], s3 to (c, d], . . ., s9 to (k, a]. Clearly, S2
α = {s1, s3} and S2

β = {s2, s4, . . . , s9}.

Next, we state the relation between collision in terms of continuous path and discrete

states. Let f i : pi → Si be a function mapping from continuous positions in pi to

discrete states in Si such that ∀x ∈ P i
k, f i(x) = sik.

Theorem 2. Given two robots ri and rj , if they are in a collision at x0 and y0, then they

are at the same state.

Proof. If ri and rj are in a collision when they are at x0 and y0, then based on Proposi-

tion 1, there exists a collision pair (P i
k, P

j
k′) such that x0 ∈ P i

k and y0 ∈ P j
k′ . Based on

the abstraction of discrete states, P i
k and P j

k′ are abstracted to the same discrete state s,

so f i(x0) = s and f j(y0) = s. Hence, ri and rj at the same state.

This theorem means that such discritization does not lose any collision. Two robots

cannot cause any collision if they are at different states. But we must point out that if

two robots are at the same state, they may not collide with each other.

5.4 Labeled Transition Systems Modeling

Based on the discrete states determined in the above section, we can build the detailed

LTS model for each robot.

First, the finite set of states of robot ri is Si. For convenience, let Si = {sik : k = 1,

2, . . ., ni}.

Second, consider the set of events. In terms of the discrete states, a robot can move

from one state to another due to change of its positions. A robot may also need to stop

its motion in order to avoid collisions. Hence, there are two actions: move and stop.

This means Σi = {move, stop}.

Third, consider the set of transitions→i for ri. On one hand, for each state sik ∈ Si,
ri move to a different state as the robot is doing persistent motion. Since its motion is

predetermined, ri can only move to a determined state. Therefore, there exists a unique

Chapter 5. Discrete Abstraction 70

state sik′ such that sik
move−→i s

i
k′ . This kind of transitions is denoted as→i,move = {sik

move−→i

sik′ : k = 1, 2, . . ., ni, and sik′ is uniquely determined by sik. In fact, the determination

of sik′ can be described as follows. Suppose sik is the discrete state of P i
k. Along the

motion direction, suppose the first segment connecting to P i
k is P i

k′ , whose discrete state

is sik′ . Thus, we have sik
move−→i s

i
k′ . For example, as shown in Fig. 5.5, the first segment

connecting to (a, b] along its motion direction is (b, c], and so we have s1
move−→i s2. On

the other hand, robot ri can stop at any state sik. Thus, there is another transition for

each sik, i.e., sik
stop−→i s

i
k. The set of all this kind of transitions is denoted as→i,stop =

{sik
stop−→i s

i
k : ∀sik ∈ Si}.

Hence, the detailed LTS model for robot ri is

Ti = 〈Si,Σi = {move, stop},→i〉 (5.1)

where Si = Siα ∪ Siβ and→i=→i,move ∪ →i,stop.

Remark 4. Note that the LTS model describes robot motion from the high-level discrete

abstraction by considering two simple actions: move and stop. Compared to the low-

level continuous motion, the discrete transitions can be triggered at the current state

only when a robot reaches the head of the corresponding segment.

Let Prei(s) = {s′ ∈ Si|s′ move−→i s} and Posi(s) = {s′ ∈ Si|s move−→i s
′}. Based

on the discrete model, ∀s ∈ Si, |Prei(s)| = |Prei(s)| = 1. Thus, for convenience,

throughout the thesis, we use Prei(s) and Prei(s) to denote the unique preceding and

succeeding states of s in Si, respectively.

Based on the LTS models of the robots in a system, we can give the LTS model of

the whole system.

Definition 10. Let Ti = 〈Si,Σi,→i〉 be the LTS model of robot ri, i ∈ IN . The en-

tire system can be described as the parallel composition of all the individual transition

systems, i.e., T = T1|| · · · ||TN = 〈C,Σ,→〉, where

1. C = S1 × . . . × SN ;

2. Σ = ∪ Σi is the set of labels;

Chapter 5. Discrete Abstraction 71

3. → = ∪i∈IN →i is the set of transitions, ∀c1 = (s1
1, s2

1, . . ., sN1) ∈ C, c2 = (s1
2, s2

2,

. . ., sN2) ∈ C, (c1, c2) ∈→i if (si1, si2) ∈→i, while sj1 = sj2 for j 6= i.

In an arbitrary configuration c = (s1, s2, . . ., sN), c(i) = si is the state of robot ri.

The set of all collision states is Sα = ∪i∈INSiα.

Proposition 2. In a multi-robot system T , for any state s1 and s2, there exists at most

one robot ri such that s1
move−→i s2.

Proof. Suppose there are two robots ri and rj , and two states s1 and s2 such that

s1
move−→i s2 and s1

move−→j s2. The collision pairs of s1 and s2 are (P i
k1
, P j

k′1
) and (P i

k2
, P j

k′2
),

respectively. Hence, P i
k1

and P i
k2

are two collision segments with rj . Since s1
move−→i s2,

P i
k1

and P i
k2

are successive. However, based on Definition 7, a collision segment is the

maximal continuous segment, P i
k1

and P i
k2

should be one segment. So do P j
k′1

and P j
k′2

.

Hence s1 and s2 should be one state.

This proposition means that two successive collision states of a robot must collide

with two different robots. For example, in Fig. 5.2, ri and rj may collide with each robot

only when they are at öagb and÷dge at the same time, or atöbhc and÷ehf simultaneously.

However, since öagb andöbhc are successive and may collide with the same robot rj . Soùagbhc is a collision segment, rather thanöagb oröbhc.
In the graphic representation of the LTS model of a multi-robot system, each circle

represents a state. For the sake of simplicity, we do not explicitly show the self-loop

transitions and labels in the graphic representation of LTS models. A state with a num-

ber i denotes the current state of ri. Arcs with the same color represent the transitions

of a robot. Different colors represent different robots and their transitions. For example,

Fig. 5.6 shows a part of the LTS model of a system containing ri, rj , and rk. The cur-

rent states of ri, rj , and rk are s1, s5, and s7, respectively. The black arcs are the move

transitions of ri, while the red ones are move transitions of rj , and the blue ones are

move transitions of rk. The transitions of rj among the given three states are s5
move−→j

s2, s2
move−→j s6, s5

stop−→j s5, s2
stop−→j s2, and s6

stop−→j s6.

At last, we give some assumptions based the discrete model.

Chapter 5. Discrete Abstraction 72

ri
s1 s2 s3

rj

s4

s7

rk

s6

s5 s8

i

k

j

FIG. 5.6: A part of the LTS model of a multi-robot system containing three robots ri,
rj , and rk. The current states of ri, rj , and rk are s1, s5, and s7, respectively.

1. Path Assumptions. Each path is a one-way traffic. This means each robot is not

allowed to move back. Thus, for any two states s1 and s2 satisfying s1
move−→i s2, the

transition s2
move−→i s1 is forbidden. Besides, Siβ 6= ∅ and Siα 6= ∅. Indeed, if Siβ = ∅,

the task of ri can be finished by other robots. Thus, the system can be refined by

removing ri. If Siα = ∅, ri can always move independently.

2. To avoid conflicts during simultaneous motion, a robot needs to identify the robots

that are moving to a same state/region at the same time, and negotiate with them to

determine the one that can fire its current move transition. Physically, all robots can

move along their continuous paths simultaneously.

5.5 Discussion and Conclusion

In this chapter, we describe the process to build the LTS model for each robot. The

main task is to discretize the path of a robot and construct its discrete state space. To

obtain its discrete state space, a robot r, on one hand, needs a priori knowledge of its

own path and can broadcast it to the robots within its communication range; on the

other hand, r should communicate to all robots that are connected to it through a multi-

hop communication path. Thus, with a sequence of communication, r can retrieve the

collision segments and construct its discrete model. If r is not connected to a robot

r′ through a multi-hop path, it implies that r′ is far away from r. Hence, the motion

of r′ cannot affect that of r and r need not consider the motion of r′. Once r′ can

communicate with r, r refines its discrete model with the new information. Thus, each

Chapter 5. Discrete Abstraction 73

s1 s2 s3 s4

s1 s21 s31 s4

s32 s22
(a) Original path.

(b) Decomposed path.

FIG. 5.7: Decomposition of a path with multiple circuits.

robot can build its model in a distributed way. It does not need any global information

and is adaptive to the change in the number of robots.

In the following three chapters, we study robot motion control in terms of the dis-

crete models built in this chapter. With discrete models, though we simplify the motion

control of multi-robot systems, we guarantee that robots can always avoid unsafe mo-

tion, especially deadlocks, which is hard to avoid during the continuous motion plan-

ning. The major impact of path discretization is its restriction on the high-level transi-

tions by ignoring the low-level maneuvers, which, however, can be complemented by

the local continuous controllers. Indeed, for the high-level control, we always assume

that suitable local continuous controllers are available that take into account robots’ dy-

namics and can stop robots’ motion in a short time, which can realize the high-level

decisions. For example, once a robot moves into a state by firing a move transition, its

local continuous controller generates a proper velocity to move at the state.

Our discussion in this thesis focuses on paths satisfying that each discrete state is

passed once in each round. For paths whose discrete states may be passed multiple

times in a round, we can decompose it into an equivalent path containing only one

circuit based on its unique motion. Suppose sj ∈ Si. Let di(sj) be the number of

occurrences of sj in the discrete path of ri. Then the decomposition can be done by

decomposing sj into di(sj) sub-states, say sj,1, sj,2, . . . , sj,di(s), each of which replaces

the original sj in the unique path of the sub-graph. To broadcast its state sequence to

others, ri still uses sj; if it receives a state sequence containing sj , ri replaces this state

with the nearest sub-state from its current state. Thus, such a decomposition cannot

affect others. For example, consider the path shown in Fig. 5.7. Suppose ri has a path

s1 → s2 → s3 → s4 → s2 → s3 → s1, as shown in Fig. 5.7(a). We decompose

s2 into s21 and s22, and s3 into s31 and s32. The resulting path is s1 → s21 → s31 →
s4 → s22 → s32 → s1, shown in Fig. 5.7(b).

Chapter 6

Distributed Approach to Collision and

Deadlock Avoidance in Multi-Robot

Systems

Based on the LTS model obtained in Chapter 5, in this chapter, we focus on distributed

collision and deadlock avoidance in a multi-robot system with fixed paths.

6.1 Introduction

Due to intersections among paths, robots may collide with others during their motion.

Besides, during the procedure of collision avoidance, deadlocks may occur. For ex-

ample, as shown in Fig. 6.1, there are four autonomous vehicles passing through an

unsignalled traffic intersection. At the current time instant, the four vehicles are in a

deadlock, and the traffic is completely jammed.

If robots can replan their paths during their motion, collisions and deadlocks can

be resolved by changing robots’ paths, such as the work in Chapter 4. However, when

each robot in a system is required to move along a predefined path and cannot change its

path or motion direction, the only way to avoid collisions and deadlocks is that different

robots move to the same position at different times. Two common control structures

74

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 75

1

2

3

4

FIG. 6.1: A deadlock among 4 vehicles at an intersection.

for collision and deadlock avoidance are centralized control and decentralized control.

However, centralized control lacks capability of flexibility and scalability, while decen-

tralized control sometimes is conservative. Based on the LTS models from Chapter 5,

in this chapter, we propose a distributed algorithm to avoid collisions and deadlocks.

Under this algorithm, each robot repeatedly checks whether its current move transition

can be fired. First, a robot executes its own local mechanism to independently avoid

collisions by checking whether its succeeding state is occupied. Despite its applica-

bility to avoid collisions, such a scheme is so simple, if not naive, that deadlocks may

occur. Second, the robot further checks whether the one-step move of a robot can cause

a deadlock. If “yes”, the algorithm will control the robot to fire its stop transitions and

the robot stops at its current state.

The main contribution of this work is a real-time and distributed algorithm to avoid

collisions and physical deadlocks in multi-robot systems. It has the following advan-

tages. First, robots can execute the algorithm in a distributed manner. Each robot only

needs to communicate with its neighbors within two states to exchange their current

states and verify collisions and deadlocks. Thus, it can avoid state explosion. Second, it

has sound scalability and adaptability. This means that the algorithm can be adaptive to

the change of robot quantity in the system. Thus, it is available to increase or decrease

robots during the execution of the system. Third, this algorithm is maximally permis-

sive for the motion of robots in terms of the high-level abstraction. Thus, each robot in

the multi-robot system can achieve high performance in terms of high-level abstraction,

i.e., they can stop as less as possible and move as smoothly as possible.

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 76

This chapter is organized as follows. The persistent motion problem of the system

is also stated in this section. A distributed algorithm for collision avoidance is present-

ed in Section 6.3. In Section 6.4, we propose an improved distributed algorithm for

both collision and deadlock avoidance. The simulation results and implementation are

described in Section 6.5. Section 6.6 gives some discussion about our work. Finally,

conclusions and future work are discussed in Section 6.7.

6.2 Problem Statement

In this section, we state the problem studied in this chapter. We first give definitions of

collisions and deadlocks in terms of LTS models and then give the problem statement.

As described in Theorem 2, if two robots are in a collision, then they are at the same

state. So if two robots are not at the same state, they are not in a collision. Hence, we

have the following collision definition in terms of discrete LTS models.

Definition 11 (Collision). A multi-robot system T is in a collision if there exist at least

two robots ri and rj , i 6= j, such that sicur = sjcur, where sicur and sjcur are their current

states, respectively.

Based on the description of deadlocks in [145], we have the following definition.

Definition 12 (Deadlock). A multi-robot system T is in a deadlock at configuration c if

some robots, ri1 , ri2 , . . . , rik , are in a circular wait: ∀im ∈ {i1, . . . , ik}, Posim(c(im)) =

c(im+1), where ik+1 = i1.

Suppose the set of all configurations in T is C, the set of collision configurations is

Cc, and the set of deadlock configurations is Cd. Then, the set of safe configurations is

Cs = C\(Cc∪Cd). Using the logical operators “implication” (→) and “conjunction” (∧),

and temporal operators “eventually” (♦) and “always” (�), we can give the problem

statement.

Problem 2. Given the LTS models {Ti}i∈IN of the robots in a system, find a distributed

and real-time motion control policy for the system such that any reachable configuration

c satisfies: (c ∈ Cs) ∧ (∧i∈IN �(c(i)→ ♦¬c(i))).

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 77

The first formula means all reachable configurations are safe, i.e., there are no colli-

sions or deadlocks, and the second one means each robot can do persistent motion and

cannot stay at the same state forever.

6.3 Collision avoidance

In this section, we propose a distributed algorithm to avoid collisions among robots.

The main idea is that if it predicts a collision with another robot after the next move

transition, a robot stops itself to wait for the move of that one. Next, we give the

detailed description.

Based on Definition 11, a system is collision-free if and only if ∀s ∈ Sα, there

exists at most one robot at s. Let a boolean signal signs denote the status of s. If s is

not occupied by any other robots, signs = 0; otherwise, signs = 1. A robot is movable

to s if s is a private state or signs = 0.

However, since each robot checks its succeeding state independently, several robots

can move to the same state simultaneously. Thus, to guarantee mutual exclusion, they

should negotiate with each other to determine which one can actually move. There are

different negotiation strategies. For example, a possible negotiation strategy is random

selection, which can be implemented as follows. Suppose X , called negotiation region,

is a set of successive states containing only collision states. At each time, robots can

communicate with their neighbors to identify the robots that are moving into or in X .

LetEX be the set of movable robots that are moving in or intoX . First, each robot inEX

generates a random time delay based on the same distribution. Then, they communicate

with others to retrieve the delays, and the robot with the minimum one obtains the right

to move. Once the robot is determined, EX is reset to empty.

We use NEG(EX) to denote the negotiation process, which returns the robot that

can move forward. Let Sign = {signs, s ∈ Sα} and Sign(s) = signs, and the collision

avoidance strategy for ri is as follows: when it is about to move to s ∈ Siα, i.e., the

current state is Prei(s), ri first checks the value of Sign(s). If Sign(s) = 0, broadcast

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 78

ri rj

pciki

pciki+1

pciki+2

pcjkj

pcjkj+1

pcjkj+2

pcctrl

t1

t2

t3

t4

FIG. 6.2: Petri net description of collision avoidance between ri and rj .

its index to EXs , and execute NEG(EXs). If ri gets the right to move, it enters s and

the signal of s changes to 1. Otherwise, it stops at its current state.

We can describe this control framework in terms of Petri nets in a more intuitive

way. As shown in Fig. 6.2, places pciki − pciki+2 (resp., pcjkj − pc
j
kj+2) represent three

consecutive states of ri (resp., rj). Each transition represents the move event from its

input place to the output one. pciki+1 and pcjkj+1 represent the same state, say s, in

CSi,j . In order to avoid a collision, ri and rj cannot stay at pciki+1 and pcjkj+1 at the

same time, i.e., for any reachable marking M , M(pciki+1) + M(pcjkj+1) ≤ 1. We add a

control place pcctrl, performing as the signal, i.e., signs. If M(pcctrl) = 1, signs = 0;

otherwise, signs = 1. Only when pcctrl has a token may the transitions t1 and t3 be

enabled. Indeed, when M(pciki) = M(pcjkj) = M(pcctrl) = 1, t1 and t3 are enabled

simultaneously and can be fired. But only one of them can be fired. Thus, the firing

selection performs the negotiation process, i.e., NEG(EX). With this comparison, the

negotiation strategies among multiple robots can also be inspired by methods for the

selection of firing transitions in Petri nets.

Based on the collision avoidance framework, the distributed algorithm to avoid col-

lisions for robot ri is shown in Algorithm 3. Note that in the algorithm, Sign is a collec-

tion of local variables signs. Each robot stores its own local variables: {signs, s ∈ Siα}.
By checking its path, each robot can determine the values of signs and execute the col-

lision avoidance algorithm independently.

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 79

Algorithm 3: Collision avoidance algorithm for Robot ri.
Input : Ti = 〈Si, Σi,→i〉, current state sicur, and Sign(s), s ∈ Siα.
Output: No collision occurs during the motion of ri.

1 Initialization: scur = sicur, snext = Posi(scur);
2 if snext ∈ Siβ then
3 Execute the transition scur

move−→i snext;
4 if scur ∈ Siα then
5 Sign(scur) = 0;

6 scur = snext; snext = Posi(scur);
7 else if Sign(snext) == 0 then
8 Add ri to EXs ;
9 if NEG(EXs) == ri then

10 Execute the transition scur
move−→i snext;

11 if scur ∈ Siα then
12 Sign(scur) = 0;

13 Sign(snext) = 1; scur = snext; snext = Posi(scur);

14 else if Sign(snext) == 1 then
15 Stop the motion at the current state;

6.4 Deadlock Avoidance

In Section 6.3, we have proposed a method to avoid collisions for each robot during its

motion. Each robot checks independently whether its succeeding state is occupied. If

“yes”, it stops; otherwise, the robot moves to the succeeding state and prevents other

robots from moving to this state. When multiple robots mutually prevent the moves of

other robots, deadlocks may occur.

For example, consider the situation shown in Fig. 6.3. There are four robots

r1, r2, r3, and r4. The states s1, s2, s3, and s4 are collision states between r1 and r4,

r1 and r2, r2 and r3, and r3 and r4, respectively. Fig. 6.3(a) shows the current states of

the four robots, i.e., r1 − r4 are at s1 − s3, and s5, respectively. At the current moment,

r4 is near the end of the related segment and begins to execute its collision avoidance

algorithm described in Algorithm 3. Since s4 is empty, the signal Sign(s4) = 0. Hence,

the event move in T4 is activated and causes r4 to transit to s4. The system reaches the

configuration shown in Fig. 6.3(b). At this configuration, r1 − r4 are waiting for the

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 80

r1

r2

r3

r4
s1

s2 s3

s4 s5
1

2 3

4

(a) Before the move of r4.

r1

r2

r3

r4
s1

s2 s3

s4 s5
1

2 3

4

(b) After the move of r4.

FIG. 6.3: A situation that causes a deadlock among four robots.

move of r2, r3, r4, and r1, respectively. They are in a circular wait. Thus, the system is

in a deadlock.

6.4.1 Deadlock Avoidance Algorithm

In this subsection, we introduce an improved algorithm for the system to avoid both

collisions and deadlocks. We first study some properties of deadlocks of the multi-

robot system in terms of graph theory. For the preliminary knowledge of graph theory,

readers can refer to reference [204].

Definition 13 (Directed Graph). Let Ti = 〈Si, Σi,→i, si0〉 be the LTS model of robot ri,

i ∈ IN . A directed graph of the multi-robot system is a two-tuple G = 〈V , E〉, where

• V = ∪Ni=1S
i is the finite set of vertices;

• E = ∪Ni=1 →i,move is the finite set of edges;

Remark 5. (1) In a directed graph, a directed edge e from vi to vi+1 is denoted as

(vi, vi+1), and vi is designated as the tail and vi+1 is designated as the head.

Based on Proposition 2, the undirected graph with the same topology structure of G

is a simple graph. Thus, we have the following definitions.

Definition 14 (Cycle). Let G = 〈V , E〉 be the directed graph of a multi-robot system.

A cycle of G is a sequence 〈v1, e1, . . ., vn, en, v1〉 such that (1) ∀i ∈ In = {1, 2, . . . , n},

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 81

vi ∈ V , and ei = (vi, vi+1) ∈ E is the directed edge from vi to vi+1, where vn+1 = v1;

(2) ∀i1, i2 ∈ In, vi1 6= vi2 if i1 6= i2; and (3) ∀j1, j2 ∈ In, suppose ej1 ∈ →k1,move and

ej2 ∈→k2,move, k1 6= k2 if j1 6= j2.

For example, as the system shown in Fig. 6.3, the sequence 〈s1, (s1, s2), s2, (s2, s3),

s3, (s3, s4), s4, (s4, s1), s1〉 is a cycle of the system. There are four different vertices rep-

resenting four different states, i.e., s1, s2, s3, and s4, and four edges representing transi-

tions of different robots, i.e., (s1, s2) ∈→1,move, (s2, s3) ∈→2,move, (s3, s4) ∈→3,move,

and (s4, s1) ∈→4,move.

In the directed graph of a multi-robot system, a vertex can be occupied by different

robots at different times. Since each robot has its unique motion direction, there may

be no deadlock even if some robots are in a cycle. Consider the two configurations

shown in Figs. 6.4(a) and 6.4(b). The robots at either configuration are in a cycle. But

the robots in Fig. 6.4(b) are deadlock-free. In fact, only some cycles satisfying certain

conditions can cause deadlocks. In the sequel, we first give the definition of deadlock

cycles, and then prove that only deadlock cycles can cause deadlocks.

Definition 15 (Active Edge). Given the graph 〈V , E〉 of a multi-robot system, a directed

edge e, e = (s1, s2) ∈→i,move ⊂ E, is called an active edge if the robot ri is at s1.

Definition 16 (Deadlock Cycle). A deadlock cycle is a cycle where all edges are active

edges.

For example, the four robots in Fig. 6.4(a) constitute a deadlock cycle since each

robot is at the tail of the corresponding edge and thus each edge is an active edge. The

robots in Fig. 6.4(b) do not constitute a deadlock cycle although each vertex of the cycle

is occupied by a robot.

Theorem 3. A multi-robot system is in a deadlock if and only if some robots compose

a deadlock cycle.

Proof. Sufficiency: A subset of robots, say ri1 , ri2 , . . ., rik , construct a deadlock cycle

in the corresponding graph. Based on Definitions 14 and 16, we suppose that the cycle

is the sequence 〈sri1 , ei1 , sri2 , ei2 , . . ., srik , eik , sri1 〉, where the robot rij is at srij and

the edge eij = (srij , srij+1
) is an active edge, i.e., eij ∈→ij ,move. The cycle is shown in

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 82

s1

s2 s3

s4

(a) (b)

1

2 3

4

r1

r2
r3

r4 s1

s2 s3

s4

1 2

34

r1

r2
r3

r4

FIG. 6.4: Two kinds of cycles in the directed graph of a multi-robot system. (a) A
deadlock cycle. (b) A cycle but not a deadlock cycle.

ri1

ri2
ri3

ri4

rik

sri1

sri2

sri3

sri4

srik ik

i1

i3

i4

i2

FIG. 6.5: k robots in a deadlock cycle.

Fig. 6.5. We can conclude that these k robots are in a circular wait and cannot move any

more. Indeed, ri1 cannot move since it can only move to state sri2 , which is occupied

by robot ri2 . So ri1 needs to wait for the move of ri2 . At the same moment, since its

succeeding state, i.e., sri3 , is occupied by robot ri3 , ri2 cannot move until ri3 moves

away from ri2’s path. However, ri3 also cannot move forward at the same time since ri4

is at sri4 , i.e., the succeeding state of ri3 . By going forward until rik , we find that the

succeeding state of rik is occupied by ri1 , leading to the stoppage of rik at the current

state. Thus, all of them are in a circular, and the system is in a deadlock.

Necessity: To prove by contradiction, we hypothesize that the system is in a dead-

lock but with no deadlock cycles. However, in the case there is no deadlock cycle, we

can prove that each robot can move one step forward eventually. Consider an arbitrary

robot ri. Suppose ri is at sri . If its succeeding state is empty, ri can move forward.

If the succeeding state is occupied by a robot, say ri1 , let’s consider ri1’s succeeding

state. If this state is empty, ri1 can move forward. After the move of ri1 , ri can move

forward. Otherwise, suppose the state is occupied by a robot, say ri2 . Clearly, we have

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 83

i2 6= i1 and i2 6= i; otherwise, there is a deadlock cycle. We continue to consider ri2’s

succeeding state and check whether it is occupied by any robot. If ri2’s succeeding state

is empty, ri2 , ri1 , and ri can move forward in sequence. Instead, if it is occupied by a

robot, say ri3 , we have i3 6= i2, i3 6= i1, and i3 6= i; otherwise, there is a deadlock cycle.

We next need to check whether the succeeding state of ri3 is occupied by a robot or not.

Do the same analysis for the remaining robots one by one by repeating the previous

procedures. Since the number of robots is finite, we can end with a robot whose suc-

ceeding state is empty; otherwise, it can compose a deadlock cycle among some robots.

Thus, the robots can move forward in turns and at last ri moves forward. By far, we can

conclude that every robot can move forward. This is a contradiction to the precondition

that the system is in a deadlock. Hence, there exists a deadlock cycle.

From Theorem 3, we can resolve deadlocks by avoiding deadlock cycles. Next, we

study how to avoid deadlock cycles and then give the collision and deadlock avoid-

ance algorithm. Here we just consider the direct deadlocks, while in the future we will

consider the impending deadlocks.

Before giving the algorithm, we describe the distributed procedure to detect dead-

lock cycles. Suppose ri is at sri . First, ri checks its succeeding state Posi(sri). If

there exists ri1 such that si1cur = Posi(sri), a message (ri, sri , i1) is delivered to ri1 . ri1

begins to estimate its succeeding state after receiving the message. If Posi1(s
i1
cur) is

also occupied by a robot, say ri2 , ri2 can receive the corresponding message (ri, sri , i2)

and begin to estimate the succeeding state. Continue delivering the message until there

exists a robot rik whose succeeding state is either sri or idle. The former means there

is a deadlock cycle when ri is at sri , while the latter means ri’s move transition to sri

cannot construct a deadlock cycle. The details are shown in Algorithm 4. In the algo-

rithm, f(sri ,→j) is a function of rj to check whether its succeeding state is sri . If the

succeeding state is sri , the check process is finished and ri determines that there is no

deadlock cycle. Otherwise, it returns (ri, sri , k) if its succeeding state is occupied by

rk; while returns (ri, sri , 0) if its succeeding state is not occupied by any robots.

The validation of the algorithm is given through the following theorem.

Theorem 4. Algorithm 4 can always end by returning a boolean value at any time.

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 84

Algorithm 4: Deadlock cycle detection algorithm for ri: Detect(Ti, sri).
Input : LTS model Ti, the state needed to detect sri .
Output: A boolean value. /* false: No deadlock cycle is

detected if ri is at sri; true: ri at sri can cause
a deadlock cycle. */

1 Initialization: rj = ri;
2 while true do

/* rj checks its succeeding state. */
3 (ri, sri , k) = f(sri ,→j) ;
4 if Posj(sjcur) == sri then
5 return true;
6 else if k == 0 then
7 return false;
8 else

/* rj sends the message (ri, sri , rk) to rk. */
9 j = k;

Proof. From the proof of Theorem 3, for any robot rj , there exists a robot such that

its succeeding state either is free or is occupied by ri after a finite number of message

deliveries. Note that in the while loop of Algorithm 4, each loop is a message delivery.

Thus, one of the conditions in Lines 4 and 6 of Algorithm 4 can eventually be satisfied

after a finite number of loops. Since there are N robots in the system, the maximal

number of loops is N .

From Algorithm 4, we notice that every time each robot only needs to check its next

two states to determine whether its move could cause a deadlock cycle. Hence, each

robot only needs to communicate with the robots that are at its next two consecutive

states. Thus, each robot only requires a communication range within two states.

Based on the definition of deadlock cycles, we can infer that the move of a robot

may cause a deadlock cycle only when its next two consecutive states are both colli-

sion states. Thus, Algorithm 4 only needs to be executed when robot ri is at a state s

satisfying Posi(s) ∈ Siα and Posi(Posi(s)) ∈ Siα. When it is at s, ri needs to predict

whether its move can cause a deadlock cycle before proceeding ahead. If a deadlock

cycle is predicted, the robot cannot move forward. The detailed collision and deadlock

avoidance algorithm is shown in Algorithm 5. Note that since each robot checks dead-

lock cycles in a distributed way, there may be many robots that can move forward at

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 85

Algorithm 5: Collision and deadlock avoidance algorithm for ri.
Input : The LTS model Ti, current state scur, and local signals Sign(s), s ∈ Siα.
Output: No collisions and deadlocks occur during the motion of ri.

1 Initialization: snext1 = Posi(scur), snext2 = Posi(snext1), set the negotiation
region X;

2 if snext1 ∈ Siβ then
3 Execute the transition scur

move−→i snext1;
4 if scur ∈ Siα then
5 Sign(scur) = 0;

6 scur = snext1; snext1 = Posi(scur); snext2 = Posi(snext1);
7 else if Sign(snext1) == 0 then
8 if (snext2 ∈ Siβ) ∨ (Sign(snext2) == 0) then
9 Add ri to EX ;

10 else if !Detect(Ti, snext1) then
11 Add i to EX ;
12 else
13 ri cannot move forward;

14 if NEG(EX) == ri then
15 EX = ∅;
16 Execute the transition scur

move−→i snext1;
17 if scur ∈ Siα then
18 Sign(scur) = 0;

19 scur = snext1; snext1 = Posi(scur); snext2 = Posi(snext1);
20 Sign(scur) = 1;

21 else
22 ri cannot move forward;

the same time. Thus, these robots should negotiate with others and only one can move

forward because of concurrency.

Now, let’s take the system in Fig. 6.3(a) as an example to explain the distributed

execution of Algorithm 5 in a multi-robot system. First, r1 − r4 perform this algorithm

simultaneously. r1 and r2 find that they have to stop at their current states since their

succeeding states are occupied (Lines 21 and 22). r3 finds that it is able to move forward

based on Lines 8 and 9. Since s1 is occupied, r4 calls Algorithm 4 and sends the

information (s4, r4) to r1. Then, r1 sends this information to r2, and r2 sends it to r3. r3

finds its succeeding state is s4, and thus sends to r4 the information that a deadlock is

found. When r4 received it, Detect(T4, s4) = true. So r4 cannot be movable (Line 13).

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 86

Hence, EX = {r3}. Clearly, NEG(EX) = r3. So r3 moves forward. Thus, with the

deadlock avoidance algorithm, the situation shown in Fig. 6.3(b) cannot occur.

6.4.2 Performance Analysis of the Algorithm

Now we give the performance analysis of the proposed collision and deadlock avoidance

algorithm, including the effectiveness and permissiveness analysis. For the sake of

simplicity, we assume that the solution to resolve a deadlock cycle cannot cause any

other deadlock cycles. This means if robot ri finds that its move to s can cause a

deadlock cycle with a set of robots, including the robot rj satisfying Posj(sjcur) = s,

then rj can pass through s without causing deadlocks at some future moment. Thus, we

have the following conclusions.

Theorem 5 (Effectiveness). Each robot can execute persistent motion without causing

any collisions or deadlocks under the control of Algorithm 5.

Proof. Suppose ri is at s. Lines 21 and 22 in Algorithm 5 guarantees that each reach-

able configuration based on Algorithm 5 is collision-free. Lines 12 and 13 in Algorithm

5 guarantees that the move of ri cannot cause deadlock cycles. Thus, each reachable

configuration based on Algorithm 5 is deadlock-free. Hence, the first requirement in

Problem 2 is always satisfied. Now consider the second requirement. If ri can even-

tually move one step forward, the proposition s → ♦¬s is satisfied. The arbitrariness

of s guarantees that �(s → ♦¬s) is satisfied for ri. Applying this conclusion to all

robots, we can conclude the second requirement is satisfied. Thus, we now only need

to consider the situations that ri cannot move forward at s. Indeed, there are two such

situations in the algorithm: (1) Detect(Ti, Posi(s)) = 1, and (2) there exists a robot

ri1 such that Posi(s) = si1cur. We need to prove that ri can eventually move forward in

either situation.

For the first case, there exist a set of robots ri1 , ri2 , . . ., rik such that sij+1
cur =

Posij(s
ij
cur), j = 1, 2, . . . , k − 1, and Posik(sikcur) = Posi(s) , ss is empty. Based

on the assumption declared at the begin of this subsection, rik can move to ss and then

to Posik(ss) in the future. When rik arrives at Posik(ss), Detect(Ti, Posi(s)) = 0

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 87

because Posik−1
(s
ik−1
cur) is now empty. Thus there is no deadlock cycle when ri is at

Posi(s). Hence, ri can move one step forward.

For the second case, there exist robots ri1 , ri2 , . . ., rik satisfying Posi1(scur) = s•i

and s
ij+1
cur = Posij(s

ij
cur) for j = 1, 2, . . ., k − 1. Moreover, Posik(sikcur) is empty.

Otherwise there must exist a deadlock cycle, which should be detected and resolved in

advance. Thus, rik either can move forward or is in the first situation. As described

before, rik can finally move forward. After rik moves forward, rik−1
is in the same

situation as rk was. Thus, rik−1
can move forward as a consequence. One by one, and

finally ri can move forward.

Definition 17 (Admissible Motion). For any robot ri with the LTS model Ti, an ad-

missible motion is the firing of a move transition that cannot cause any collision and

deadlock.

Theorem 6 (Maximal Permissiveness). The control policy described by Algorithm 5 is

a maximally permissive control policy for ri’s motion.

Proof. Because of the concurrency, the admissible motion is described in terms of

reachability. This means even though its current motion is admissible, the robot actually

cannot move forward at some rounds since it does not win in the negotiation processes.

During the computation of reachable graph, we need to list all the possible moves of the

robots in EX . Thus, considering the motion of ri, we assume that ri always wins the

negotiation during our proof.

We need to prove that any possible control policies must contain the stopping motion

of Algorithm 5. Suppose ri is at an arbitrary state s at the current moment. On one hand,

from the algorithm, ri will stop its motion in two cases: (1) Detect(Ti, Posi(s)) = 1

(Lines 12 and 13), and (2) Posi(s) ∈ Siα ∧ Sign(Posi(s)) = 1 (Lines 21 and 22). The

first one means that ri’s move can cause a deadlock cycle. Based on Theorem 3, such

a move can lead the system to a deadlock. The second means ri’s current succeeding

state is occupied by a robot. Thus, it cannot move forward in order to avoid collisions.

Clearly, these two kinds of motion must be forbidden. This means that any available

control policies for ri must contain these two situations of stopping motion. On the

other hand, except such two cases, ri can always move forward based on the previous

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 88

r1

r2

r3

r4
s1 s2

s3s4

s20

s10

s40
s30

4 3

2

1

(a) Current states of the four robots.

s20

s2

s1

r2

s30

s3

s2

r3

s40

s4

s3

r4

〈r4, s4〉

〈false〉

〈r4, s4〉

2 3

4

〈false〉

(b) Communication activated by r4 for deadlock detection.

FIG. 6.6: An example to show communications among robots for deadlock detection.

assumption. Thus, for any state s, if ri stops at s under Algorithm 5, ri stops at s

under any other available control policies. Hence, the proposed algorithm is maximally

permissive.

The motion of the system under a maximally permissive control is the maximally

permissive motion. Here the maximally permissive motion is with respect to evolution

of the LTS models. Moreover, as described in the proof of Algorithm 6, the maximal

permissive motion means the reachable configuration space is maximal, but does not

mean that a robot in the admissible motion can always move forward. Indeed, because

of concurrency, even though it can be able to move forward, a robot may be still at its

current state. This happens because the robot does not get the right to move forward in

the negotiation process. But when computing the reachable space, though it is unnec-

essary, each time we need to list all possibilities that one movable robot moves forward

while others stay at their current states, without considering the negotiation process.

To the end, we illustrate the communication among robots in order to detect dead-

locks. Consider the situation in which four robots are passing through the crossing. The

current states of these robots are shown in Fig. 6.6(a). Consider the execution of r4. At

this moment, after checking the status of s3 and s4, r4 needs to determine whether its

move to s4 can cause deadlocks since s3 is occupied. The communication via message

delivery is shown in Fig. 6.6(b). First, r4 sends the message 〈r4, s4〉 to r3, and then r3

sends it to r2. When it receives this message, r2 sends a Boolean value false to r4 since

r2’s succeeding state is not occupied by any robot. Thus, r4 can conclude that there are

no deadlocks when it is at s4, i.e., detect(r4, s4) = false.

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 89

-25 -20 -15 -10 -5 0 5 10 15 20 25
-20

-15

-10

-5

0

5

10

15

20

a1 a2

a3a4

a5 a6

a
7

a
8

p1

p2

p3

p4

(a) Four intersecting paths p1 − p4.

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

a1 a2

a3a4

(b) The enclosed region defined by a1 − a4.

FIG. 6.7: Paths of four robots in our simulation.

6.5 Simulation Implementation and Results

6.5.1 Simulation Case and Results

In this section, we implement the algorithms in MATLAB. Simulations are carried out

for a multi-robot system with four robots r1, r2, r3, and r4, whose paths are shown in

Fig. 6.7. Each path is a circle with a radius of 10 units. Their detailed equations are

p1 : (x + a)2 + y2 = 102 (the blue one), p2 : x2 + (y + a)2 = 102 (the red one), p3 :

(x−a)2 + y2 = 102 (the green one), and p4 : x2 + (y−a)2 = 102 (the cyan one), where

a =
È

102 − (π
25

)2 + π
25

. There are totally 8 intersection points, i.e., a1 − a8.

Based on Definition 1, the parametric equations of the four paths are p1 = p1(θ1) =

(−a + 10 cos 2πθ1, 10 sin 2πθ1), p2 = p2(θ2) = (10 sin 2πθ2,−a + 10 cos 2πθ2),

p3 = p3(θ3) = (a + 10 cos 2πθ3, 10 sin 2πθ3), and p4 = p4(θ4) = (10 sin 2πθ4, a +

10 cos 2πθ4), where θ1, θ2, θ3, θ4 ∈ [0, 1]. Each path is discretized using the discrete

points shown in Table 6.1, whereN∗ = {0, 1, 2, . . ., 249}, and robots move among these

discrete points. Note that the footprint of a robot at (x0, y0) is (x− x0)2 + (y − y0)2 =

(π
25

)2 by considering the safe radius.

The values of the parameter of the 8 points on different paths are shown in Table 6.2.

For example, consider point a1. a1 is an intersection point of p1 and p2. The parameter

value of a1 on p1 is 499/500, while on p2, the value is 126/500.

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 90

TABLE 6.1: Discrete Points of the Four Paths

Path Values of Parameters of the Discrete Points

p1 θ1 = (2k+1)
500

, k = (N∗\{61, 62, 187, 188}) ∪ {61.5, 187.5}

p2 θ2 = 2k
500

, k = (N∗\{0, 1, 124, 125}) ∪ {0.5, 124.5}

p3 θ3 = (2k+1)
500

, k = (N∗\{62, 63, 186, 187}) ∪ {62.5, 186.5}

p4 θ4 = 2k
500

, k = (N∗\{0, 125, 126, 249}) ∪ {125.5, 249.5}

TABLE 6.2: Parameter Values of Collision Points on Each Path

Point
Values of Different Parameters

θ1 θ2 θ3 θ4

a1 499/500 126/500 − −

a2 − 124/500 251/500 −

a3 − − 249/500 376/500

a4 1/500 − − 374/500

a5 376/500 249/500 − −

a6 − 1/500 374/500 −

a7 − − 126/500 499/500

a8 124/500 − − 251/500

?: “−” means the point is not on the path of the PCS.

We first simulate the motion of the system under the control of Algorithm 3. Con-

sider two different initial configurations of the system. Case 1: the initial positions

of r1 − r4 are θ1 = 479/500, θ2 = 116/500, θ3 = 229/500, and θ4 = 356/500, re-

spectively. Case 2: the initial positions of r1 − r4 are θ1 = 479/500, θ2 = 104/500,

θ3 = 229/500, and θ4 = 354/500, respectively.

In our simulation, the motion of each robot is implemented by the timer object in

MATLAB. Thus, all robots can be executed concurrently.

From the simulation results, we find that robots with the initial states of Case 1 can

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 91

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

a1 a
2

a
3

a
4

FIG. 6.8: A deadlock occurs in Case 2 under the control of the collision avoidance
algorithm.

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

a1 a2

a3

a4

(a) Configuration c1.
-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

a1
a2

a3
a4

(b) Configuration c2.
-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

a1
a2

a3
a4

(c) Configuration c3.

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

a1
a2

a3a4

(d) Configuration c4.
-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

a1
a2

a3a4

(e) Configuration c5.
-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

a1 a2

a3a4

(f) Configuration c6.

FIG. 6.9: Six snapshots of the simulation of Case 2 under control of deadlock avoid-
ance algorithm. Configurations c2 − c6 show the process of deadlock avoidance.

move persistently without causing collisions and deadlocks; while with those of Case

2, after firing 10 transitions simultaneously, they stop at the configuration shown in Fig.

6.8. Clearly, at this configuration, a deadlock occurs. Thus, only the collision avoidance

is not sufficient to guarantee the persistent motion of the system.

Next, we repeat the simulation of Case 2 by replacing Algorithm 3 with Algorithm

5. With this algorithm, the four robots need to negotiate with each other when they want

to move to a1 − a4 simultaneously. Fig. 6.9 shows 6 snapshots of the simulation.

Suppose the system is now at the configuration shown in Fig. 6.9(a). At this mo-

ment, r1 − r4 are able to move one step forward based on the condition in Line 8 of

Algorithm 5. Suppose r1 wins in the negotiation process, r1 moves one step forward

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 92

FIG. 6.10: Deadlocks in extended systems from 4 robots to 25 robots. There exist 16
deadlocks in the system. Each deadlock region is marked by a dashed square.

and reaches a1. Then, r2 − r4 and r1 are able to move forward. If r2 is selected from

their negotiation, it moves forward and arrives at a2. Continually, r3, r4, and r1 are able

to move, but only r3 is selected to move. Thus, r3 arrives at a3. Therefore, the system

reaches the configuration shown in Fig. 6.9(b). At this configuration, r4 predicts that

its move to a4 can cause a deadlock. Hence, r4 cannot move based on the condition in

Line 12 of Algorithm 5. Moreover, r2 and r3 cannot move forward based on Line 21 of

their own local Algorithm 5. Thus, only r1 can move one step forward based on Line

8 of its Algorithm 5. When r1 reaches a4, a1 is empty. So r2 is able to move forward

and then is selected to move. The move of r2 releases a2 such that r3 is allowed and se-

lected to move to a2. Thus, the configuration of the system is now shown in Fig. 6.9(c).

At configuration c3, r4 cannot move forward since a4 now is occupied by r1. Since its

next state is a private state, r1 moves one step forward and leaves away from a4, so

do r2 and r3. Now r4 can move one step forward since its next two consecutive states

are empty. Suppose r4 is selected to move one step forward, the system reaches the

configuration shown in Fig. 6.9(d). We can do the similar analysis on how the system

reaches the states shown in Figs. 6.9(e) and 6.9(f). When the system is at configuration

c6, we can conclude that it is effective to avoid collisions and deadlocks since all robots

are at their own private states. The video for the simulation of Case 2 can be found at

https://www.youtube.com/watch?v=fjosKjMXsW8.

https://www.youtube.com/watch?v=fjosKjMXsW8

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 93

TABLE 6.3: The Numbers of Robots and Different Deadlocks That May Occur

robots 4 9 16 25 . . . n2 . . .
deadlocks 1 4 9 16 . . . (n− 1)2 . . .

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

robots

#
 d

e
a

d
lo

c
k
s

without deadlock avoidance

with deadlock avoidance

FIG. 6.11: The numbers of deadlocks that may occur in systems with different robot-
s. Without deadlock avoidance, the number is linearly increased in proportion to the
number of robots, while with our deadlock avoidance algorithm, there are no deadlocks

during the evolution of the system.

For a deeper exploration of our algorithm, we first study deadlocks in the systems

extended from the original system in Fig. 6.7(a) by continually adding the deadlock

regions p1 − p4. For the first study, in an arbitrary extension, each path can intersect

with at most four other paths, and each internal circle intersects with four other paths.

A deadlock can only happen among four robots. Moreover, the paths of n2 robots con-

struct a square with n circles in each edge. For example, Fig. 6.10 shows an extended

system with 25 robots. There are 16 deadlocks that may occur during the evolution of

this system. The relation of the number of robots and that of deadlocks that may occur

is shown in Table 6.3. We can find the number of deadlocks increases in proportion to

the number of robots. Thus, the system would be at a great risk of breakdown if there

are many robots in the system. With the control of proposed deadlock avoidance algo-

rithm, there are no deadlocks that can occur during the evolution of the system, shown

in Fig. 6.11. Hence, it is important to control a multi-robot system with the proposed

deadlock avoidance algorithm, which is effective to avoid deadlocks.

Next, we would like to study the time for a robot to perform its deadlock detection

process with different numbers of robots. As shown in Fig. 6.12, we study two config-

urations: the first one is that r1 will detect a deadlock among n robots, and the second

is that r1 does not detect any deadlock among these robots since rn’s next state is not

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 94

s0

s1

s2

sk

sk+1

sn−1

sn

2

k

k + 1

n− 1

1

n

(a) A configuraiton that a deadlock is
detected by r1 with n robots.

s0

s1

s2

sk

sk+1

sn−1

sn

2

k

k + 1

n− 1

1

n

(b) A configuraiton that no deadlocks
are detected by r1.

FIG. 6.12: Two simulation configurations of n robots. (a) r1 detects a deadlock with
the other n − 1 robots during its detection process. (b) r1 does not detect a deadlock

after a sequence of communications among the other n− 1 robots.

4 10 20 30 40 50 60 70 80 90 100
Number of Robots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n
T

im
e

(m
s)

Configuration with no predicted deadlocks
Configuration with a predicted deadlock

FIG. 6.13: Average computation time for either configuration with different numbers
of robots.

s1. We study different values of n, from 4 to 100. For each number, we run either

configuration with 100 times and compute the average time. All our simulations are

implemented with MATLAB R2017a on a desktop running Windows 10, and equipped

with an Intel(R) Xeon(R) CPU E5-1650 v3 3.5GHz and 16 GB of RAM. The results are

shown in Fig. 6.13. From the results, we can find that the computation time is almost

increased linearly with respect to the number of robots. Indeed, based on our method, a

robot involving a prediction process only needs to check the status of its next state and

then transmits the message to another robot. If all robots are with the same configura-

tion, each robot almost has the same time to perform its execution during the prediction

process. Hence, the total computation time for a robot’s prediction process increases

linearly with respect to the number of robots involved.

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 95

(a) A real intersection. (b) Abstract model of the intersection.

FIG. 6.14: An intersection in NTU campus and its diagrammatic drawing.

6.5.2 Simulation Results on of a Practical Scenario

Now we simulate our algorithm on a scenario that four autonomous vehicles are passing

through an intersection, such as the one shown in Fig. 6.14, which is an intersection in

our campus.

Suppose four vehicles arrive at the intersection successively, as shown in Fig. 6.15.

Fig. 6.16 shows the deadlock occurring among the vehicles only with the collision

avoidance algorithm. Now we consider the evolution of the system with different dead-

lock avoidance algorithms. Fig. 6.17 shows an intermediate configuration of the system

with the collision and deadlock avoidance algorithm proposed in [130]. Based on their

method, the intersection is abstracted to one state, and at any time instant, there is at

most one vehicle in the crossing. Thus, at the current time, even though they are able to

move forward, vehicles 3 and 4 cannot move into the crossing since vehicle 2 is in the

crossing. Fig. 6.18 shows three snapshots of the system during the move to pass through

the crossing under the control of our method. From the configurations, we can find that

vehicles 2, 3, and 4 can be in the crossing at the same time. At configuration 1 in Fig.

6.18(a), vehicle 1 cannot move in order to avoid deadlocks, while at configuration 2 in

Fig. 6.18(b), vehicle 1 cannot move since it is stopped by vehicle 2. Only when vehicle

2 moves away can vehicle D move forward, shown in Fig. 6.18(c).

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 96

FIG. 6.15: Four vehi-
cles arrive at the inter-
section successively.

FIG. 6.16: Four vehi-
cles are in a deadlock.

FIG. 6.17: An interme-
diate configuration un-
der the method of [130].

(a) Configuration 1. (b) Configuration 2. (c) Configuration 3.

FIG. 6.18: Three snapshots of the motion under the control of our proposed algorithm.

6.6 Discussion

The most related work of this work is [130]. Authors in [130] divide all collision regions

into a set of disjoint collision zones. Hence, each robot has at least one collision-free

zone between any two collision zones. Collision avoidance is to control robots to enter

the same collision zone at different times and collision avoidance does not cause any

deadlocks. Then, they propose some centralized stop policies to determine the robots

that need to stop entering the zone. Since different robots determine the sequence in-

dependently, there may exist decision making deadlocks. But there are no deadlocks

physically. Thus, deadlocks can be resolved easily by resuming one of the robots. Due

to the abstraction of disjoint collision zones, some admissible motion is forbidden.

For example, as shown in Fig. 6.19, there are four robots r1 − r4 to pass through a

narrow and dense region. Taking the safe radius into consideration, r1 can collide with

r2− r4 in the left, middle, and right segments, respectively; while r2− r4 cannot collide

with each other in this region. Based on the method in [130], this region is abstracted

as one collision zone CZ1, shown in Fig. 6.19(b). When it is in the segmentùA1A4,

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 97

r1

r2 r3

r1

r2 r3

r4

r4

(a) The paths of four robots.

(b) A collision zone. (c) Three different collision states.

A1 A2 A3 A4

B1

B2

C1

C2

D1

D2

s1 s2 s3CZ1

r1,r2,
r3,r4

Abstraction in [127] Abstraction in our work

FIG. 6.19: Comparison of different ways to deal with collision regions in [130] and
our work.

r1 is in CZ1; when it is in the segmentùB1B2, r2 is in CZ1; when it is in the segmentùC1C2, r3 is in CZ1; and when it is in the segment ùD1D2, r4 is in CZ1. Consider the

following situation. Suppose r2 − r4 and r1 arrive at B1, C1, D1, and A1 consecutively.

r2 enters intoùB1B2 first. When it moves intoùB1B2, r2 is in CZ1. So r1, r3, and r4 have

to stop their motion. Once r2 leaves B2, r3 moves intoùC1C2, while r1 and r4 remain

at a standstill. Next, when r3 leaves C2, r4 moves into ùD1D2, but r1 is still in halting.

Only when r4 is away from D2 can r1 start to move. Hence, r1, r3, and r4 need more

times of stop.

While with our method, this region is abstracted as three different states s1 − s3,

shown in Fig. 6.19(c). When it is in the segmentsùA1A2,ùA2A3, andùA3A4, r1 is at states

s1, s2, and s3, respectively; when it is in the segmentùB1B2, r2 is at s1; when it is in the

segmentùC1C2, r3 is at s2; and when it is in the segmentùD1D2, r4 is at s3. Still, consider

the former situation. When it moves intoùB1B2, r2 arrives at s1. So r1 needs to stop to

wait for the leaving of r2. However, r3 and r4 can continue their motion since there are

no robots at s2 and s3. So they do not need any stops. After r2 leaves s1, r1 can move

to s1. Suppose the time for a robot to stay at a state is same. Thus, when r1 is going to

move to s2, r3 has left s2. So r1 can move to s2 without any stops, and so does it for s3.

In conclusion, with our method, the four robots can pass through this region only with

r1’s one time of stop. Hence, our method can lead to fewer stops from fewer robots.

At last, take the scenario given in Section 6.5.1 as an example to show the efficiency

of our method and that in [130] in terms of the length of event sequences. We study

6 different initial configurations and count the length of the maximal event sequence

Chapter 6. Distributed Approach to Collision and Deadlock Avoidance 98
TABLE 6.4: Comparison of the Length of the Maximal Event Sequence Leading a

Robot to Move 2 Rounds

Initial Configuration (× 1
500

)
Length of the Maximal Event Sequence
Optimal Soltero’s [130] Ours

(479, 104, 221, 348) 496 499 498
(471, 100, 229, 352) 496 501 499
(211, 456, 397, 478) 496 496 496
(327, 16, 77, 466) 496 498 496
(339, 378, 371, 196) 496 496 496
(479, 104, 229, 354) 496 502 498

which leads a robot to move 2 cycles along its path. The results are shown in Table 6.4.

Since the numbers of move events of the four robots are the same, the shorter length of

an event sequence, the fewer stop events and the better concurrency and efficiency of

the system. From Table 6.4, our method is an improvement of that in [130].

In conclusion, the method in [130] simplifies motion control of robots but it is con-

servative; while our method allows more admissible motion.

6.7 Conclusions

In this chapter, we investigate a real-time policy for collision and deadlock avoidance

in a multi-robot system, where each robot has a predetermined and intersecting path. A

distributed algorithm is proposed to avoid collisions and deadlocks in such a system. It

is performed by repeatedly stopping and resuming robots whose next move can cause

collisions or deadlocks. In the algorithm, each robot should check its next two consec-

utive states to determine whether it can move forward. We also prove that the proposed

algorithm is maximally permissive for each robot’s motion. The simulation results of a

system with four robots further verify the effectiveness of the algorithm.

Chapter 7

Distributed Approach to Higher-Order

Deadlock Avoidance in Multi-Robot

Systems

In chapter 6, we focus on collision and deadlock avoidance in multi-robot systems

where each robot has its own predetermined and closed path, by assuming that for some

simple paths, deadlocks can be predicted and resolved directly. However, in some com-

plex path networks, to avoid a deadlock may cause another circular wait, which results

in higher-order deadlocks. A higher-order deadlock is a deadlock-free configuration,

from which the system will lead to a deadlock inevitably. In this chapter, we investi-

gate the characteristics of higher-order deadlocks and propose a distributed approach to

avoiding high-order deadlocks.

7.1 Introduction

Deadlock avoidance is a crucial problem in motion control of multi-robot systems since

deadlocks can crash the systems and degrade performance. Besides, sometimes, espe-

cially in the systems with fixed paths, deadlocks are not easy to be predicted since even

though the system is deadlock-free at the current moment, it will fall into a deadlock

in the future. Traditional methods to avoid such situations are either centralized, e.g.,

99

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 100

reachability graph based methods, or decentralized, e.g., the banker’s algorithm or its

variants. Centralized methods are effective to avoid all deadlocks but lack robustness

and flexibility, while decentralized methods are efficient to avoid deadlocks but may

forbid some available motion.

In this chapter, we investigate the structural properties of the configurations that will

cause deadlocks inevitably by introducing the concepts of higher-order deadlocks and

their orders, and propose a distributed approach to avoiding higher-order deadlocks.

First, based on the LTS models built in Chapter 5, we conclude that there exist at most

the (N − 3)-th higher-order deadlocks with N robots. This means that deadlocks, if

any, will occur unavoidably within N − 3 steps of corresponding transitions. Second, a

distributed algorithm is proposed to avoid higher-order deadlocks in the systems under

our consideration. In the algorithm, each robot only needs to look ahead at most N − 1

states, i.e., N − 3 intermediate states and two endpoint states, to determine whether its

move can cause higher-order deadlocks. To execute its local algorithm, a robot needs to

communicate with its neighbors.

The main contributions of this work are twofold.

• The first one is that we propose the concept of deadlock orders. The main result is

that N robots can form a higher-order deadlock with at most (N − 3)-th order. This

means from such a configuration, a deadlock will occur inevitably within (N−3)-step

moves of the robots that are always included in a circuit.

• The second one is a distributed algorithm to avoid higher-order deadlocks. The algo-

rithm allows only robots, whose one-step move cannot cause collisions and higher-

order deadlocks, to move forward. According to the properties of higher-order dead-

locks, each robot needs to look ahead at most N − 1 states, i.e., one starting state,

one ending state, and N − 3 intermediate states, to determine whether it can move

forward or not, rather than checks its whole state space.

This chapter is organized as follows. Section 7.2 gives the problem statement of

deadlock avoidance in terms of LTSs. Sections 7.3 and 7.4 give a detailed control

algorithm for higher-order deadlock avoidance and its distributed nature. Section 7.5

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 101

shows simulation results. Sections 7.6 and 7.7 give a detailed comparison with other

typical methods and the conclusion, respectively.

7.2 Problem Statement

Before giving our problem statement, we recall some notations and definitions described

in Chapter 6. Given a multi-robot system with N robots, whose LTS models are Ti, i ∈
IN , its configuration, denoted as c, is a vector composing of the states of all robots in

the system, i.e., c= (s1, s2, . . ., sN), where si ∈ Si and c(i) = si. Recall the definitions

of collision and deadlock configurations given in Definitions 11 and 12 in Section 6.2.

Definition 18. A configuration c is a collision one if ∃i, j ∈ IN , i 6= j, such that

c(i) = c(j). The set of collision configurations is denoted as Cc, so the set of collision-

free configurations is Ccfree = C \ Cc.

Definition 19. A configuration c is a deadlock configuration if there exist a set of robot-

s, ri1 , ri2 , . . . , rik , such that ∀im ∈ {i1, . . . , ik}, c(im)•im = c(im+1), where ik+1 = i1.

The set of deadlock configurations is denoted as Cd, and the set of deadlock-free con-

figurations is Cdfree = Ccfree \ Cd.

A collision configuration is a configuration where there are at least two robots at the

same state, and a deadlock configuration is configuration where some robots are in a

circular wait. In the sequel, we can define higher-order deadlocks, the concentration of

this chapter.

Definition 20 (Higher-order Deadlock). A configuration c is a higher-order deadlock if

(c ∈ Cdfree) ∧ (c → ♦cd), where cd ∈ Cd. The set of higher-order deadlock configura-

tions is denoted as Chdead.

For example, Fig. 7.1 shows an example of higher-order deadlocks. In Fig. 7.1, c0

is a higher-order since the system will reach a deadlock eventually. Indeed, at c0, r1, r3,

and r4 can move one step forward, leading to c1, c2, and c3, respectively. At c3, r1, r4,

and r5 form a deadlock. At c1, a deadlock must occur among r1 − r4. If r1 moves one

step forward, r1 − r3 form a deadlock (c4), while if r3 moves forward, r1, r3, and r4

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 102

r1
s1 s2 s3 s4

s5

s6

s7

r2

r3

r4

r5

1 2

3

4

5

r1
s1 s2 s3 s4

s5

s6

s7

r2

r3

r4

r5

1 2

3

4

5

r1

s1 s2 s3 s4

s5

s6

s7

r2

r3

r4

r5

1 23

4

5

r1

s1 s2 s3 s4

s5

s6

s7

r2

r3

r4

r5

1 2

3

4

5

r1
s1 s2 s3 s4

s5

s6

s7

r2

r3

r4

r5

1 2

3

4

5

r1
s1 s2 s3 s4

s5

s6

s7

r2

r3

r4

r5

1 23

4

5

r1

s1 s2 s3 s4

s5

s6

s7

r2

r3

r4

r5

1 234

5

(c0)

(c1)

(c2)

(c3)

(c4)

(c5)

(c6)

r 1

r4

r
3

r1

r
3

r 1

r4

FIG. 7.1: An example of higher-order deadlocks. c0 is a higher order deadlock. The
system will finally lead to a deadlock, i.e., c3, c4, c5, or c6.

form a deadlock (c5). At c2, a deadlock will occur among r1, r3, r4, and r5. If r1 moves

one step forward, r1, r3, and r4 form a deadlock (c5), while if r4 moves forward, r1, r4,

and r5 form a deadlock (c6).

There is no doubt that to ensure safety, each admissible configuration should not be

a higher-order deadlock. Let Cfree = Cdfree \ Chdead. In the sequel, we can give the

problem statement studied in this chapter.

Problem 3. Given a multi-robot system withN robots, whose LTS models are {Ti}i∈IN ,

find an online and distributed control policy for the system such that all reachable con-

figurations are in Cfree.

7.3 Higher-Order Deadlocks and Their Avoidance

In this section, we study the characteristics of higher-order deadlocks from the system

level, based on which we develop a distributed method in the next subsection to detect

higher-order deadlocks by each robot.

Definition 21. An edge-colored digraph is a quadruple 〈V,E, Ic, C〉, where V is a finite

set of vertices, E is a finite set of edges, Ic is a finite set of colors, and C : E → Ic is a

function assigning each edge with a color in Ic.

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 103

Definition 22. The edge-colored digraph produced from a multi-robot system, {Ti =

〈Si, Σi, →i,move〉, i ∈ IN}, is a quadruple GT = 〈V,E, Ic, C〉, where V = ∪i∈INSi,
E = ∪i∈IN→i,move, Ic = IN containing N different colors, and C is a color mapping

satisfying ∀e ∈→i,move, C(e) = i.

This definition means that in the graphic representation of a multi-robot system, all

edges from the same robot are colored by the same color. Based on Proposition 2 in

Chapter 5, we can conclude that there are no two states that are connected by two or

more different colored edges in GT .

Definition 23. An individual walk of robot ri in GT is a sequence of vertices and edges

with the form 〈s1, (s1, s2), s2, . . ., sn−1, (sn−1, sn), sn〉, where sk ∈ Si for all k ∈ In.

Without ambiguity, w can also be simplified as w = 〈s1, s2, . . ., sn〉. The tail of w,

denoted as t(w), is t(w) = s1, and the head of w, denoted as h(w), is h(w) = sn. If a

robot is at a private state, then it cannot block any robot. So in the rest, we only need to

study the situation that a robot is at a collision state. We have the following definition.

Definition 24. Suppose w(c) = 〈s1, s2, . . . , sn〉 is an individual walk of ri at configura-

tion c, then

• w(c) is risky if (1) ∀k ∈ In, sk ∈ Siα; and (2) ri is at s1, while sn is occupied by

another robot rj at c.

• w(c) is safe if (1) ∀k ∈ In−1, sk ∈ Siα, and sn ∈ Siβ; and (2) ri is at s1 whereas

other states are empty at c.

The concepts of risky and safe walks are dependent on system configurations. Given

a configuration c where a robot is at a collision state, this robot has either risky walks or

a safe walk. Each robot can check risky or safe walks independently since it only needs

to detect its own path.

If a robot has a safe walk currently, its one-step move cannot cause collisions or

deadlocks since as the last resort it can move to its private state while others stop at

their current states. Hence, we only need to consider the robots that have risky walks.

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 104

r1

s1
s2 s3

s4 s5

s6

s7

s8

r2

r3

r4

r5

r6

1 2

3

4

5

6 r1
s1 s2 s3 s4

r6

r1
s1 s2 s3 s4

s5

s6

r2

r3 r1

s1 s2

s3

s4
s5

s6

s7

s8

r2

r3

r4

r5

r6

s4
r6

s4

(b) W1

(c) W2 (d) W3

1 6

1

6 3

2

1

6

5

4

2

3

(a) Configuration

FIG. 7.2: A configuration containing three circuits.

The following descriptions are related to a given configuration c even if it is not shown

explicitly.

For a risky walk w, the states between its tail and head are called intermediate states

ofw, denoted as SE(w); the length ofw is defined as L(w) = |SE(w)|. Note that a risky

walk with length l has l + 2 states, i.e., l intermediate states + one tail + one head. For

convenience, we sometimes use wij to denote ri’s risky walk whose head is occupied

by rj . For example, at the configuration shown in Fig. 7.2(a), r1 has two risky walks:

w16 = 〈s1, s2, s3, s4〉 and w12 = 〈s1, s2, s3, s4, s5〉; SE(w16) = {s2, s3}, L(w16) = 2;

and SE(w12) = {s2, s3, s4}, L(w12) = 3.

Definition 25. W = 〈w1, w2, . . ., wm〉 is a circuit if (1) ∀i ∈ Im, wi is a risky walk, and

h(wi) = t(wi+1) where wm+1 = w1, and (2) ∀i1, i2 ∈ Im, i1 6= i2, wi1 and wi2 belong

to two different robots.

For example, the configuration shown in Fig. 7.2(a) contains three circuits, shown

in Figs. 7.2(b)−(d). W1 = 〈w16, w61〉 is a circuit since w16 and w61 are risky walks of

r1 and r6, respectively; h(w16) = s4 = t(w61) and t(w16) = s1 = h(w61). Similarly,

W2 = 〈w12, w23, w36, w61〉, andW3 = 〈w12, w23, w34, w45, w56, w61〉 are circuits too.

For a circuitW , the following notations are used in the sequel. I(W) = {i1, i2, . . .,

im} is the set of indices of robots inW , where rij is at t(wj). SE(W) = ∪mj=1SE(wj)

is the set of intermediate states of W . Sα(W) = ∪ij ,ik∈I(W)∧ij 6=ik S
ij
α ∩ Sikα denotes

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 105

r1
s2 s3 s4

s5

s6

s7

s8

r2

r3

r4

r5

1

5

4

2

3

FIG. 7.3: The sub-circuitW ′3 ofW3 given in Fig. 7.2.

all collision states between any two different robots in I(W), and Ii(W) is the set of

robots at the states of SE(W).

Next, we introduce the sub-circuit of a circuit. SupposeW = 〈w1, w2, . . ., wm〉 is a

circuit, where wj = 〈sj1, sj2, . . ., sjkj〉 is a risky walk of rij , ∀j ∈ Im. Select a movable

robot rip , p ∈ Im, and let it move one step forward. The risky walk wp changes to

w′p = 〈sp2, . . ., spkp〉. Then verification is done to check whether there still exists a circuit

with some of the risky walks inW . The process starts from rip with w′p. First, rip sends

the information of sp2 to rip+1 . After it receives this message, rip+1 checks whether wp+1

passes over sp2. If not, the message is again sent to rip+2 by rip+1 . Then rip+2 begins to

check wp+2. Repeat sending the message to robots until a robot, say rip1 , checks that

its risky walk, wp1 , passes over sp2. Note that wj = wj−m if j > m. Thus, wp1 = 〈sp11 ,

sp12 , . . ., sp2, . . ., sp1kp1 〉 changes to w′p1 = 〈sp11 , sp12 , . . ., sp2〉, and W ′ = 〈w′p, wp+1, . . .,

wp1−1, w′p1〉 is a circuit. We callW ′ sub-circuit ofW . Note the risky walks between w′p

and w′p1 inW ′ are the same as those inW , while w′p and w′p1 are parts of wp and wp1 ,

respectively.

For example, considerW3 = 〈w12, w23, w34, w45, w56, w61〉 in Fig. 7.3. Let r1 move

to s2. Then w′12 = 〈s2, s3, s4, s5〉, the risky walk of r5 becomes w51 = 〈s8, s2〉, and r6

is excluded fromW3. Thus,W ′3 = 〈w′12, w23, w34, w45, w51〉 is a sub-circuit ofW3.

A circuitW may contain other smaller circuits. The difference between the smaller

circuits and sub-circuits is that the smaller circuits must coexist with W at the same

configuration c, while sub-circuits are generated by the moves of some robots inW and

are existent at a succeeding configuration of c. For example, as shown in Fig. 7.2,W1

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 106

and W2 are two smaller circuits of W3 at the current configuration, but they are not

sub-circuits ofW3; whileW ′3 is a sub-circuit at the succeeding configuration of that in

Fig. 7.2(a).

In the sequel, we describe the relation between deadlocks and circuits.

Definition 26. A deadlock cycle is a circuit where the length of each risky walk is 0.

Proposition 3. A deadlock cycle contains at least 3 robots.

Proof. First, consider there exists a deadlock cycle with two robots. Without loss of

generality, suppose W = 〈w1, w2〉. We have h(w1) = t(w2) and h(w2) = t(w1),

implying that there are two vertices connected by two colors. This violates Proposition

2. Second, as shown in Fig. 7.1(a), there exists a deadlock cycle with three robots.

Proposition 4. A configuration c is a deadlock configuration if and only if there exists

a deadlock cycle in c.

Proof. Suppose c is a deadlock configuration satisfying Posim(c(im)) = c(im+1) for

m = 1, 2, . . . , k and ik+1 = i1. Thus, rim has a risky walk wim = 〈c(im), c(im+1)〉.
Hence,W = 〈wi1 , wi2 , . . . , wim〉 is a deadlock cycle.

Suppose W = 〈wi1 , wi2 , . . . , wik〉 is a deadlock cycle at c. ∀m ∈ {1, 2, . . . , k},
since the length of wim is 0, wim = 〈sim , sim+1〉, where sim and sim+1 are the current

states of rim and rim+1 , respectively; and ik+1 = i1. So Posim(sim) = sim+1 . This

means ri1 , ri2 , . . . , rik satisfy Definition 19. Hence, c is a deadlok configuration.

As described before, it is difficult to predict deadlocks in advance owing to the

existence of higher-order deadlocks. So we first study the characteristics of higher-

order deadlocks.

Definition 27. A circuitW is called a k-th order deadlock if (1) for any movable robot,

its one-step move causes a lower-order deadlock with these robots, and (2) there exists

a robot such that its one-step move causes a (k−1)-th order deadlock with these robots.

Remark 6. We assume that a suitable local continuous controller is available for each

robot that takes into account the robot’s dynamics and can stop the robot in a short

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 107

time. One-step move corresponds to the switch from the current segment to the next

one physically. It takes place only at the end of the current segment.

Remark 7. If a circuit contains a smaller circuit which is a higher-order deadlock, the

larger one is also a higher-order deadlock. It makes no sense to study the larger circuit

without resolving the contained higher-order deadlock. So we focus on simple higher-

order deadlocks, meaning that the smaller circuits in a higher-order deadlock are always

deadlock-free.

Indeed, a k-th order deadlock is a circuitW such that a deadlock occurs inevitably

within k times of transitions. Here the number of transitions is counted by the moves of

robots that are involved in the sub-circuits ofW before their moves. A deadlock cycle

is also called 0-th order deadlock.

Intuitively, a k-th order deadlock occurs because the robots in the circuitW , i.e., rij ,

ij ∈ I(W), are in a “circular wait” in order to avoid lower-order deadlocks or collisions.

In other words, ri1 cannot move forward because its move can cause a lower-order

deadlock. Thus, it has to wait for the robot in its path, say ri2 , to move away. However,

ri2 cannot move forward since its move can also cause a lower-order deadlock. So ri2

also needs to wait for the move of the robot in its path, say ri3 . This process iterates

until rim needs to wait for the move of ri1 . Thus, a circular wait occurs and none of

them can move. Note, collision avoidance leads to deadlock cycles while the (k− 1)-th

order deadlock avoidance leads to the k-th order deadlock.

For example, as shown in Fig. 7.1, c0 is a second-order deadlock. A deadlock can

happen after one-step move (c3) or two-step move (c4 − c6). Note that as described

before, the number of steps of move is counted by the robots that are always in the

resulting sub-circuits. Hence, at c1, since r5 is not in c0’s sub-circuit resulting from

the move of r1, its motion is not taken into consideration during the evolution of c1.

Similarly, at c2, the motion of r2 is not taken into consideration in the evolution of c2.

Lemma 1. IfW is a higher-order deadlock, SE(W) ⊆ Sα(W).

Proof. SupposeW = 〈w1, w2, . . ., wm〉 is a higher-order deadlock, where wj is a risky

walk of rij , ∀j ∈ Im. If there exists s, s ∈ SE(wk), k ∈ Im, such that s /∈ Sα(W). Then,

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 108

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

s1 s2

s3 s4
s5

s6

s7

s8

s9

s10 s11

s12 s13

s14

s15

s16

1 2

3

4 5

6 7

8

9

10

FIG. 7.4: An example of a live circuit with 10 robots. The states with numbers are the
current states of the corresponding robots.

we can conclude that W is live. First, there exists an execution such that the robots

between rik’s current state and s can move away fromwk without causing any deadlocks

except those with rik and the robot at h(wk). Otherwise, there exists a lower-order

deadlock inW , which is in conflict with the simple higher-order deadlock assumption.

Then, let rik move to s. However, after it moves to s, rik cannot block the motion

of other robots in W because of s /∈ Sα(W). This means there is no “circular wait”

among the robots in W anymore. Thus, W is live. This is a contradiction. Hence,

∀s ∈ SE(W), s ∈ Sα(W), i.e., SE(W) ⊆ Sα(W).

Note that Lemma 1 describes a necessary but not necessarily sufficient condition.

For example, robots r1 − r10 in Fig. 7.4 form a circuitW = 〈w12, w23, w34, w45, w56,

w67, w78, w89, w9,10, w10,1〉, where w12 = 〈s1, s2, s3, s4, s5〉, w23 = 〈s5, s6, s7, s8〉,
w34 = 〈s8, s9〉, w45 = 〈s9, s10, s7, s11〉, w56 = 〈s11, s6, s4, s12〉, w67 = 〈s12, s13〉,
w78 = 〈s13, s4, s14〉, w89 = 〈s14, s10, s3, s15〉, w9,10 = 〈s15, s2, s16〉, and w10,1 = 〈s16,

s1〉. Clearly,W satisfies SE(W)⊆ Sα(W). But it is live. Indeed, let r2 move to s7 first.

Thus, r1 can move to s5 and then to its private state. Second, r10, r9, r8, r7, r6, and r5

can move to their own private states in turns. Third, r4 moves to s10. So r3 and r2 can

move to their private states in sequence. At last, r4 can move to its private state. Thus,

no deadlocks can occur during their motion in this circuit.

Lemma 2. IfW = 〈w1, w2, . . ., wm〉 is a k-th order deadlock, k ≤ m− 3.

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 109

rij

rij−1

sj1

sj2

sj−1
1

s

FIG. 7.5: The bold edges are the move transitions of rij and rij−1 , the states with
crosses denote the current states of robots, and the dotted ones represent the move

transitions of the rest robots inW .

Proof. For any movable robot rij , its one-step move will release at least the robot rij−1

fromW [, T1]. (For example, as the system shown in Fig. 7.2, when r1 moves to s2

from s1, r6 is excluded from the sub-circuit.) We prove T1 using proof by contradiction.

Suppose rij−1
is still in the sub-circuit of W after rij moves one-step forward [,

¬T1]. Then, let wj = 〈sj1, sj2, . . ., sjkj〉 be the risky walk of rij . wj−1 in W should

satisfy: (1) sj2, sj1 ∈ wj−1; (2) there exists at least one state between sj2 and sj1; and (3)

only rij and rij−1
can traverse sj2 (Otherwise a sub-circuit is constructed before rij−1

is

considered). Without loss of generality, suppose wj−1 = 〈sj−1
1 , . . ., sj−1

kj−1
, sj2, s, sj1〉.

Thus,W is with the structure shown in Fig. 7.5.

SinceW is a higher-order deadlock, there exists an execution such that rij and rij−1

still form a higher-order deadlock with the robots in this circuit and the states between

rij and rij−1
are idle. There are two cases after such an execution. The first one is that

rij does not need to move one step forward and the second one is that rij needs to move

one step forward. For the first one, let rij−1
move to s, then rij to sj2. So ri does not

block any other robot. This means there is no circular wait anymore. Thus, there is no

deadlock. (For example, as shown in Fig. 7.6(a), let r5 (rij−1
) move to s, then r1 (rij)

can move to s1
2. Next, r5 can move to s1

1. Thus, r5, r4, r3, and r2 can leave this circuit,

and finally r1 can also leave this circuit. So there is no deadlock.) However, W is a

higher-order deadlock. So in this case, ¬T1 is not satisfied and thus T1 is satisfied. For

the second case, it means that rij blocks some robots’ motion even though rij is not the

robot that they need to wait for leaving in the circular wait. Thus, when rij moves to sj2,

other robots can move sequentially and finally all robots at the states of rij−1
can move

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 110

r1

s11

s12

r1

r6

s11

s12

2
3

4

5

6

1

(a) (b) s61

s s

1

2

3

4

5

r2
r3

r4

r5 r4
r2

r3

r5

s62

FIG. 7.6: Examples to illustrate the proof of Lemma 2.

w1

w2w3wm−1wm

1

3

2

i

m

FIG. 7.7: An example of an (m− 3)-th order deadlock containing m robots.

away from their current states. Then, the robots that need to wait for the leaving of these

robots can now leave the circuit. Thus, rij1 can move forward and does not block other

robots. This means rij−1
cannot form a deadlock with rij . (For example, as shown in

Fig. 7.6(b), after r1 (rij) moves to s1
2, r4 can move to s1

1, causing that r3 can leave s6
2.

Thus, r2 can leave the circuit. So r6 (rij−1
) can move to s6

2 and does not block others.)

However, if ¬T1 is satisfied, rij−1
should form a deadlock with rij . Thus, ¬T1 cannot

be satisfied and T1 is satisfied.

Thus, we prove that the first statement, i.e., T1, is satisfied. Repeatedly applying T1,

we can conclude that a k-step move can release at least k robots. After k-step moves,

there are still some robots that form a deadlock cycle. The number is not less than 3

based on Proposition 3. Thus, the total number of robots is not less than k + 3, i.e.,

m ≥ k + 3. Hence, k ≤ m− 3.

On the other hand, there exists an (m−3)-th order deadlock withm robots. Consider

the circuit shown in Fig. 7.7. W = 〈w1, w2, . . ., wm〉, where (1) ∀i ∈ Im, SE(wi) ⊆
SE(w1); and (2) |SE(w1)| = k, |SE(w2)| = |SE(wm)| = 0, and |SE(wj)| = 1 for other

risky walks. Clearly, k = m − 3. Moreover, a deadlock cycle can occur inevitably

within m− 3 steps. Hence,W is an (m− 3)-th order deadlock.

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 111

Lemma 3. IfW is a k-th order deadlock, |SE(W)| = k.

Proof. On one hand, during the motion to form a deadlock cycle, each robot moves

along the intermediate states of its risky walk in W . Besides, based on the definition

of sub-circuit, once it has been traversed, an intermediate state is excluded from the

sub-circuit. Thus, each intermediate state can be traversed at most one time during the

process to form a deadlock cycle. Hence, |SE(W)| ≥ k. On the other hand, when some

robots inW form a deadlock cycle after some steps of move, they are at the intermediate

states of the original risky walks inW . Thus, for any higher-order deadlock, a deadlock

cycle must occur when all the intermediate states are traversed. Hence, |SE(W)| ≤ k.

From the above analysis, |SE(W)| = k.

According to Lemmas 2 and 3, we can get the boundary of the number of interme-

diate states in a higher-order deadlock.

Lemma 4. For a higher-order deadlock W = 〈w1, w2, . . ., wm〉, |SE(W)| ≤ m − 3.

Moreover, for all i ∈ Im, |SE(wi)| ≤m− 3.

Based on above lemmas, the following statement gives criteria to check whether a

circuit is a higher-order deadlock.

Theorem 7. SupposeW = 〈w1, w2, . . ., wm〉 is a circuit and |SE(W)| = k. W is live

if (1) k > m − 3 or SE(W) \ Sα(W) 6= ∅, or (2) there exists a movable robot such

that its one-step move either causes no circuits or forms a sub-circuit W ′ satisfying

|SE(W ′)| > |I(W ′)| − 3 or SE(W ′) \ Sα(W ′) 6= ∅.

Proof. If k > m− 3,W is deadlock-free based on the converse-negative proposition of

Lemma 4; while if SE(W) \ Sα(W) 6= ∅, based on the converse-negative proposition

of Lemma 1,W is deadlock-free. Thus, if condition (1) is satisfied,W is live.

Suppose condition (2) is satisfied. If the one-step move of a robot causes no circuit

among these robots, these robots cannot be in a deadlock. Thus, W is deadlock-free.

Otherwise, if the resulting sub-circuitW ′ satisfies one of the two described conditions,

we can concludeW ′ is live based on the proof of condition (1). Thus,W is live.

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 112

Remark 8. If the computation time is available, the second condition can be extended

to the following one: There exists a movable robot such that its finite-step move either

causes no circuits or forms a sub-circuit W ′ satisfying |SE(W ′)| > |I(W ′)| − 3 or

SE(W ′) \ Sα(W ′) 6= ∅.

In the sequel, we describe the procedure for higher-order deadlock checking. The

details are shown in Algorithm 6. In the algorithm, Ai is an N -dimensional vector,

where Ai(j) = l < ∞ means that there exists a risky walk of ri such that the head

is occupied by rj and the length is l; Ai(j) = ∞ means the current state of rj is not

in Si or there exists at least one private state of ri between ri and rj; Wi collects the

risky walks that ri can construct if ri is at s. Note that each robot computes Ai and Wi

independently.

The algorithm contains three steps. The first one is that ri searches for its nextN−2

states and updates Ai and Wi, i.e., Lines 1−7 in Algorithm 6. The second step is that

ri searches for all circuits it can form by communicating with others, i.e., Lines 8−15

in Algorithm 6. In this step, for each robot rj at its next N − 2 states, ri sends message

(rj , 〈ri, s〉, RW , Index) to rj . The first parameter in the message identifies the receiver

of the message; the second one denotes the robot activating the procedure of deadlock

detection and its checked state; RW collects the risky walks delivered by the previous

robots; and Index is the set of remaining robots and it guarantees that different risky

walks in the generated circuit are of different robots. Once it receives (rj , 〈ri, s〉, RW ,

Index), rj executes its visit function, taking the received message as an input.

The detailed procedure of a robot’s visit function is given in Function visit. Sup-

pose rj receives a message (rj , 〈ri, s〉, RW , Index) from rj′ . rj first detects robots at

its next N − 2 states, stored in Nj (Lines 3 − 9 in Function visit). If Nj = ∅, meaning

that there are no circuits with rj , so rj sends RWf = ∅ back to rj′ (Lines 11 and 12

in Function visit). Otherwise, for each robot rk in Nj , rj adds its risky walk wik to

RWf (Line 15 in Function visit). If rk is ri, then this branch is finished and rj sends

the generated RWf back to rj′ (Lines 16 and 17 in Function visit); otherwise, rj send-

s a message (rk, 〈ri, s〉, RWf , Index) to rk, and waits for rk’s response (Line 19 in

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 113

Algorithm 6: Process of higher-order deadlock detection for ri if it is at s.
Input : ri’s LTS model Ti; the state to be checked: s.
Output: Boolean value.

/* Step 1: Search for the risky walks. */
1 p = s; q = Posi(p); w = 〈p, q〉; Wi = ∅; Ai =∞ ;
2 for k = 1 to N − 2 do
3 if q ∈ Siβ then

/* Reach a private state. */
4 Break;
5 else if ri detects another robot, say rj , at q then
6 Ai(j) = k − 1; wij = w; Wi = Wi ∪ {wij};
7 p = q; q = Posi(p); w = 〈w, q〉;
/* Step 2: Search for the circuits that ri can form.

*/
8 Circuit = ∅; /* Collect circuits. */
9 Ni = {j : Ai(j) 6=∞ and j 6= i};
/* Detect the neighbors on ri’s path */

10 Index = IN ;
11 for each j ∈ Ni do
12 RW = ∅; /* RW stores the risky walks forming a

circuit. */
13 RW = 〈wij〉 ;
14 Send message (rj, 〈ri, s〉, RW, Index) to rj and wait for response from rj’s

visit function;
15 Circuit = All returned circuits RWf from other robots;
/* Step 3: Higher-order Deadlock Checking. */

16 if Circuit == ∅ then
17 return true;

18 while Circuit 6= ∅ do
19 Select the first circuit, sayW , in Circuit;
20 Circuit = Circuit \ {W};
21 BroadcastW to the system;
22 Count SE(W), I(W), and Sα(W);
23 if (|SE(W)| > |I(W)| − 3) ∨ (SE(W) \ Sα(W) 6= ∅) then

/* Satisfy the first condition in Theorem 7. */
24 return true;
25 else
26 Call each robot execute its check(W , rj);
27 return ∨j∈I(W)check(W , rj);

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 114

Function visit(rj, 〈ri, s〉, RW, Index)

/* rj adds a risky walk to RW and then sends the
message to the next robot. */

Input: Received message (rj , 〈ri, s〉, RW , Index) from rj′ .

1 RW1 = RW ;
2 p = sjcur; q = Posj(p0; w = 〈p, q〉; Wj = ∅; Aj =∞;
3 for k = 1 to N − 2 do

/* rj checks its next N − 2 states. */

4 if q ∈ Sjβ then
5 Break;
6 else if rj detects a robot, say rl, at q then
7 Aj(l) = k − 1; wjl = w; Wj = Wj ∪ {wjl};
8 p = q; q = Posj(p); w = 〈w, q〉;
9 Nj = {k : k ∈ Index1 and Aj(k) 6=∞};

10 Index1 = Index \ {j};
11 if Nj == ∅ then

/* No circuits with respect to ri. */
12 RWf = ∅ and send it back to rj′;
13 else
14 for each k ∈ Nj do
15 RWf = 〈RW1, wjk〉;/* Add a risky walk to RW1. */
16 if rk == ri then
17 Send RWf to rj′;
18 else
19 Send message (rk, 〈ri, s〉, RWf , Index1) to rk and wait for response;
20 Once receive RWf from rk, transmit it to rj′ ;

Function visit); when it receives response with RWf from rk, rj further transmits this

response to rj′ (Line 20 in Function visit).

The third step of Algorithm 6 is to check the circuits, i.e., Lines 16−27 in Algorithm

6. Function check(W , rij) in this step is used to check whether rij ’s move satisfies the

second condition in Theorem 7, whereW = 〈w1, . . ., wm〉 is a circuit and wj = 〈sj1, sj2,

. . ., sjmj
〉 is a risky walk of rij . Each robot can execute this function independently once

it receives the corresponding circuitW .

Next, we give the complexity analysis of the deadlock detection process. Based on

Algorithm 6, there are three steps in this process. The first step is to check the status of

the next N − 2 states. It can be done in O(N) time. The second one is to search for the

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 115

Function check(W , rij)

1 w′j = 〈sj2, . . ., sjmj
〉;W ′ = 〈w′j〉;

/* Search for a sub-circuit of W with w′j. */
2 for k = j + 1 to j +m− 2 do
3 if k > m then
4 wk = wk−m;

5 if sj2 ∈ wk then
/* A sub-circuit is formed. */

6 w′k = 〈sk1, . . ., sj2〉;W ′ = 〈W ′, w′k〉;
7 Break;
8 else
9 W ′ = 〈W ′, wk〉;

10 if k == j +m− 1 then
11 return true;
12 else
13 Count SE(W ′), I(W ′), and Sα(W ′);
14 if (|SE(W ′)| > |I(W ′)| − 3) ∨ (SE(W ′) \ Sα(W ′) 6= ∅) then

/* The second condition in Theorem 7 is
satisfied. */

15 return true;
16 else
17 return false;

circuits by communicating with other robots. Note that each robot can send messages

to different robots at the same time and the robots receiving the messages can check

their own states simultaneously. Thus, the main computation for each robot is to check

its next N − 2 states. Hence, the computation complexity for this step is O(N2). The

third step is to verify whether there are deadlocks in the received circuits. Suppose the

number of detected circuits is M , then the computation complexity is O(M). Note that

in theory, M = O(2N) for general cases. However, in our method, each robot only

needs to look ahead at most N − 1 states, thus, with our discretization, the number

of circuits should not be large. Moreover, in practice, the number of robots in a multi-

robot system cannot be too large or change greatly. Thus, our method cannot cause high

complexity and can work well in practice.

Algorithm 7 gives the collision and deadlock avoidance algorithm for robot ri. The

procedure can be described as follows. Before it moves to the next state, ri needs

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 116

Algorithm 7: Collision and deadlock avoidance of ri.
Input : Robot ri’s LTS model Ti.
Output: Motion without collisions and deadlocks of ri.

1 scur = ccur(i), snext = Posi(scur), the negotiation region X;
2 if snext ∈ Siβ then

/* The succeeding state is a private one. */

3 Execute the transition scur
move−→i snext;

4 if scur ∈ Siα then
5 Sign(scur) = 0;

6 ccur(i) = snext;
7 else if Sign(snext) == 1 then
8 Stop for a given delay and re-perform the algorithm;
9 else

10 if Algorithm 6(ri, snext) then
/* One-step move cannot cause any higher-order

deadlocks. */
11 Determine the negotiation robots EX ;
12 if NEG(EX) == ri then
13 Execute the transition scur

move−→i snext;
14 EX = ∅;
15 if scur ∈ Siα then
16 Sign(scur) = 0;

17 cnext(i) = snext; Sign(snext) = 1;

18 else
19 Stop for a given delay and re-perform the algorithm;

to check whether its transition is allowed. Lines 2−8 are the procedure for collision

avoidance. If its next state is a private state, ri moves forward and updates its current

state (Lines 2−6). If the next state is occupied by a robot, ri cannot move forward in

order to avoid collision and it tries a new attempt after a given delay (Lines 7−8). If

collision avoidance is guaranteed, ri checks whether its move can cause any higher-

order deadlocks and then determine the event to be triggered (Lines 9−19). If its move

cannot cause higher-order deadlocks and it wins the negotiation, ri moves one step

forward; otherwise, it re-executes the algorithm after a given delay.

According to Algorithm 7, deadlock detection is to check whether there exists a

higher-order deadlock when the robot is at its succeeding state. Thus, each robot should

look ahead N − 1 states, two endpoints, including the succeeding state, and N − 3

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 117

intermediate states, to determine whether it can move forward.

Theorem 8 states the correctness of Algorithm 7.

Theorem 8. Under the control of Algorithm 7, the system is always live if the initial

configuration c0 is live.

Proof. On one hand, given a deadlock-free configuration, the new generated configura-

tion by any robot executing its Algorithm 7 is deadlock free. This is because the search

process in Algorithm 6 makes sure that all circuits are searched. Thus, Lines 9−19 in

Algorithm 7 guarantee that the move of a movable robot cannot cause any higher-order

deadlocks. Hence, the generated configuration is live. Since c0 is live, all reachable con-

figurations generated by Algorithm 7 are deadlock-free. On the other hand, we assert

if its one-step move can cause a higher-order deadlock currently with a set of robots,

ri first stops at its current state but can eventually move forward in the future. This is

because the involved robots can move forward at least one by one due to the stop of ri,

eventually allowing ri to move forward. Therefore, the system is live and each robot

can move persistently.

7.4 Distributive Analysis

In this section, we specify the distributed nature of the proposed algorithm.

According to Algorithms 6 and 7, to execute its local algorithms, each robot may

need to (1) check the status of its collision states via on-board sensors, and (2) commu-

nicate with its neighbors to check higher-order deadlocks.

On one hand, each robot needs to retrieve the status of its own collision states,

i.e., Sign(s), using its on-board sensors. Indeed, during the implementation, Sign is

a set of independent local resources, i.e., {Sign(s) : s ∈ Sα}. Each robot stores the

local signals {Sign(s) : s ∈ Siα}. To retrieve these values, the robot uses its sensors

to detect whether there are some robots at its collision states within its sensing range.

After a robot arrives at a collision state, other robots may use their own sensors to

detect the status of this state and then can determine their motion. In this way, each

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 118

r1

s2 s3 s4
s5

s6

s7
r2

r3

r4

s1

s8

1 2

4

3

FIG. 7.8: A system with four robots that are traversing a collision region.

s2

s3

s4

s1

s4

s6

msg:
(r2, 〈r1, s2〉, RW, Index)

s3

s6

• RW = 〈w12〉
• w12 = 〈s2, s3, s4〉
• Index = {1, 2, 3, 4}

• RW = 〈w12, w23〉
• w23 = 〈s4, s6〉
• Index = {1, 3, 4}

• RW = 〈w12, w23, w34〉
• w34 = 〈s6, s3, s7〉
• Index = {1, 4}s2

s7

RW = 〈w12, w23, w34, w41〉,
where w41 = 〈s7, s2〉

s7

r1r2r3r4

msg:
(r3, 〈r1, s2〉, RW, Index)

msg:
(r4, 〈r1, s2〉, RW, Index)

1

2

2

3

3

4

4

FIG. 7.9: The communication of r1 with other robots for the deadlock checking pro-
cess. s2 is the state that r1 needs to check.

robot manages its own local signals independently, rather than depends on external

computers or other devices. For example, as shown in Fig. 7.8, the collection of local

signal resources is {Sign(s2), Sign(s3), Sign(s4), Sign(s6), and Sign(s7)}. r1 stores

{Sign(s2), Sign(s3), Sign(s4)}; r2 stores {Sign(s4), Sign(s6)}; r3 stores {Sign(s3),

Sign(s6), Sign(s7)}; and r4 stores {Sign(s2), Sign(s7)}. When the system is at the

current configuration, r1 retrieves Sign(s2) = 0, Sign(s3) = 0, and Sign(s4) = 1.

After r1 moves to s2, if r4 starts its detection, then it could detect r1 and set Sign(s2)

stored in it to 1 using its own sensors.

Even though each robot stores its own local signals of its collision states, there is no

need to synchronize the values of the same collision state stored in different robots. This

means when a robot changes the value of a collision state, it does not affect the signals

related to this state but stored in other robots. Indeed, suppose a robot changes one of

its signals, say Sign(s). If other robots need to check s to make decisions, they should

first use their sensors to check the status of s and update the corresponding value, rather

than the previous value.

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 119

On the other hand, a robot may communicate with its neighbors for deadlock de-

tection. For example, consider the system shown in Fig. 7.8. Suppose at the current

configuration of the system, r1 activates the process of deadlock detection, i.e., Line 10

in Algorithm 7. To check whether its motion to s2 can cause a higher-order deadlock,

r1 needs to obtain the circuits it can build if it is at s2 via communication among robots.

The detailed communication process is shown in Fig. 7.9. First, r1 identifies r2 and

thus sends a message (r2, 〈r1, s2〉, RW, Index) to r2. When it receives this message, r2

invokes function visit, adds a risky walk w23 into RW , and delivers the message to r3.

Similarly, r3 and r4 sequentially receive this message and invoke their visit functions.

Finally, r4 sends the circuit RW = 〈w12, w23, w34, w41〉 back to r1. Thus, the commu-

nication is finished and r1 begins to check whether RW is a higher-order deadlock.

Finally, as described in Chapter 6, a robot also needs to communicate with the robots

in EX to execute the negotiation process for mutual exclusion. This process may be

done by a local coordinator, which is selected from the robots in EX randomly. Once

the current coordinator is failed, another one can be an alternative. Thus, there are no

centralized components.

Remark 9. In our method, the sensing range is N−1 sequential collision states in terms

of the abstraction, and the communication range is larger than the sensing range thanks

to the wireless network. During the communication process, each robot only needs to

communicate with some robots within the communication range. With the intermediate

robots, a robot can also achieve the states of robots out of its communication range.

Such information transmission is acceptable since the communication speed is much

higher than the physical motion speed. Besides, a robot activates the communication

process once it receives a message from other robots or it wants to move forward.

Now we can conclude the communication complexity of our method in terms of

communication rounds. Here a communication round means that a robot sends a mes-

sage with any size to the receiver. Suppose there are N robots in the system. First,

during the detection of the circuits, a robot needs to communicate with the robots on its

path. In the worst case, each robot needs to communicate with the rest N − 1 robots,

so the number of communication rounds is N(N − 1) = N2 − N . With a sequence

of communication, a robot can obtain the risky walks of other robots. The number of

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 120

C1

Robot 1

C2

Robot 2

C3

Robot 3

communication

Sign(S1
α) Sign(S2

α) Sign(S3
α)

communication

communication

FIG. 7.10: An example of the control architecture of a multi-robot system under our
approach. The dashed lines denote the communication among controllers.

communication rounds is at mostN . Second, during the negotiation process, the largest

number of communication rounds is N . Thus, in the worst case, the number of commu-

nication rounds is (N2 −N) +N +N = N2 +N . So the communication complexity

is O(N2).

At the end, we give an example in Fig. 7.10 to show the system-level control struc-

ture of a multi-robot system under the proposed control algorithm. C1, C2, and C3 are

three local controllers, equipped with Algorithms 6 and 7, of three robots, and they only

need to communicate with each other.

7.5 Simulation Cases

In this section, we give simulations of a system with 8 robots. Fig. 7.11 shows the LTS

model of this system. The current state of a robot is marked with its index. Different

colors represent different robots. Our goal is to guarantee that the robots can move to

the private states s1
0, . . . , s

8
0 (the dashed private ones) successfully at the initial config-

uration c0 = (sicur)
8
i=1 = (s1, s6, s7, s10, s11, s12, s13, s14). Thus, once a robot arrives

at its dashed private state, we no longer consider its motion. Our simulation is imple-

mented with MATLAB R2017a on a desktop running Windows 10, and equipped with

an Intel(R) Xeon(R) CPU E5-1650 v3 3.5GHz and 16 GB of RAM.

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 121

s2 s3 s4 s5 s6

r2

r3

s8

r6

s12s9s11

r5

s14r8

s10
r4

r7

s13

r1

s1

s7

1 2

3

4

5 6

7

8

s10

s20

s30

s40

s50

s60

s70

s80

FIG. 7.11: A case study with 8 robots. Each dashed circle denotes a private state.

7.5.1 Simulation Without Higher-Order Deadlock Avoidance Algo-

rithm

First, consider the evolution of the system without higher-order deadlock avoidance

algorithm. Since all robots need to move into a crowded region with no private states,

they have to negotiate. We apply Monte Carlo simulation method to do our simulation,

i.e., each time the movable robots are randomly selected to move forward. Detailedly,

we conduct 8 experiments with different simulation rounds: 10, 100, 500, 1000, 2000,

5000, 8000, and 10000. A round is an evolution of the system resulting in a deadlock

or each robot to its dashed private state. A live round is an evolution of the system such

that all robots can reach s1
0 − s8

0. To count the number of live rounds, we further repeat

each experiment 100 times and then compute the average number of live rounds. Table

7.1 shows the number of simulation rounds and the corresponding average number of

live rounds. In Fig. 7.12, we draw the numbers of total rounds and deadlock rounds,

which are denoted by the star points. Then, we fit these points with a linear function,

shown as the line in Fig. 7.12. Clearly, the slope of the line gives an experimental

evaluation of the probability that an execution leads to a deadlock. In this experiment,

the probability is around 0.3. This means the system is with low reliability without any

deadlock avoidance algorithms.

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 122

TABLE 7.1: The Numbers of Simulation Rounds and Corresponding Average Live
Rounds with Random Motion

rounds # live rounds # rounds # live rounds
10 3.19 2000 602.47

100 30.22 5000 1503.97
500 149.41 8000 2406.44

1000 296.9 10000 3017.65

rounds
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av

er
ag

e
liv

e
ro

un
ds

0

500

1000

1500

2000

2500

3000

3500

FIG. 7.12: The relation between the numbers of total rounds and average live rounds
with random motion. Each experiment is repeated 100 times.

1 5 10 15 20 25 27
Epoches

0

0.2

0.4

0.6

0.8

1

1.2

T
im

es
 (

m
s)

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

FIG. 7.13: Time estimation for higher-order prediction.

7.5.2 Simulation Under the Control of the Higher-Order Deadlock

Avoidance Algorithm

Next, we show the evolution of the system under the control of Algorithm 7. We run

the system with the numbers of rounds shown in Table 7.1. The results show that none

of them causes any deadlocks. At each round, all robots can reach s1
0 − s8

0 after total 27

steps of moves. To evaluate the efficiency of our approach, for each robot, we further

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 123

s2 s3 s4 s5 s6

r2

r3

s8

r6

s12s9s11

r5

s14r8

s10
r4

r7

s13

r1

s1

s7

1 2

3

4

5 6

7

8

s10

s20

s30

s40

s50

s60

s70

s80

(a) Initial Configuration c0.

s2 s3 s4 s5 s6

r2

r3

s8

r6

s12

s9
s11

r5

s14
r8

s10

r4

r7

s13

r1

s1

s7

1 23

4

5 6

7

8

(b) Configuration c1.

s2 s3 s4 s5 s6

r2

r3

s8

r6

s12

s9
s11

r5

s14
r8

s10

r4

r7

s13

r1

s1

s7

1 23

4

5 6

7

8

(c) Configuration c2.

s2 s3 s4 s5 s6

r2

r3

s8

r6

s12

s9
s11

r5

s14
r8

s10

r4

r7

s13

r1

s1

s7

1 23

4

5 6

7

8

(d) Configuration c3.

s2 s3 s4 s5 s6

r2

r3

s8

r6

s12

s9
s11

r5

s14
r8

s10

r4

r7

s13

r1

s1

s7

1 23

4

5

6

7

8

(e) Configuration c4.

s2 s3 s4 s5 s6

r2

r3

s8

r6

s12

s9
s11

r5

s14
r8

s10

r4

r7

s13

r1

s1

s7

1

2

3

4

5

6

7

8

(f) Configuration c5.

s2 s3 s4 s5 s6

r2

r3

s8

r6

s12

s9
s11

r5

s14
r8

s10

r4

r7

s13

r1

s1

s7

1

2

3

4

5

6

7

8

(g) Configuration c6.

s2 s3 s4 s5 s6

r2

r3

s8

r6

s12

s9
s11

r5

s14
r8

s10

r4

r7

s13

r1

s1

s7

1

2

3

4

5

6

7

8

(h) Configuration c7.

s2 s3 s4 s5 s6

r2

r3

s8

r6

s12

s9
s11

r5

s14
r8

s10

r4

r7

s13

r1

s1

s7

1

2
3

4

5

6

7

8

(i) Configuration c8.

FIG. 7.14: Some snapshots during the evolution of the simulation system. (a) Initial
Configuration c0; (b) Configuration c1 which is generated from c0 by the move of r3;
(c) Configuration c2 which is generated from c1 by the move of r7; (d) Configuration
c3 generated from c2 by the move of r5; (e) Configuration c4 generated from c3 by
the move of r6; (f); Configuration c5 generated from c4 after r2 moves two steps; (g)
Configuration c6 generated from c5 by the moves of r8r6r8r6; (h) Configuration c7

generated from c6 by the moves of r4, r7, r6, and r4; (i) Configuration c8 generated by
the moves of sequence r1r5r3r7r5.

compute the time for higher-order deadlock detection at each step. We run the system

100 rounds and compute the average prediction time. The results are shown in Fig.

7.13. From Fig. 7.13, we can find that the prediction can be done in milliseconds. Note

that at the initial configuration, r1 predicts a higher-order deadlock with all other robots;

while r2 and r4 do not need to perform the process of higher-order deadlock prediction

since their next states are occupied by r3 and r5, respectively.

In the sequel, we show one evolution of the system from the simulation

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 124

results. Via a set of negotiations, the sequence of the moves of robots is

r3r7r5r6r2r2r8r6r8r6r4r7r6r4r1r5r3r7r5r3r1r3r1r1r3r1r1. Fig. 7.14 shows some snap-

shots of this evolution. First, r1, r2, and r4 cannot move forward since the move of r1

can cause a fifth-order deadlock, while the succeeding states of r2 and r4 are occupied

by other robots. Thus, the set of movable robots is eX = {r3, r5, . . . , r8}, and r3 obtains

the right to move forward and moves to s5. The generated configuration is c1 = (s1,

s6, s5, s10, s11, s12, s13, s14), which is shown in Fig. 7.14(b). Clearly, r4 is blocked by

r5 at c1, so the robots that can move forward are r2, r5, . . . , r8. In the simulation, r7 is

the winner of the negotiation process. Thus, r7 moves one step forward and the current

configuration changes to c2 = (s1, s6, s5, s10, s11, s12, s3, s14), shown in Fig. 7.14(c).

From this configuration, robots r2, r5, r6, and r8 are allowed to move, but finally only

r5 moves forward, resulting in the configuration c3 shown in Fig. 7.14(d). Similarly,

the next movable robot is r6, and the generated configuration is shown in Fig. 7.14(e).

The next two-step move of r2 leads r2 to its private state s2
0, resulting in a configuration

c5 = (s1, s
2
0, s5, s10, s9, s8, s3, s14), shown in Fig. 7.14(f). Next, we no longer consider

the motion of r2. With the next two successive moves of r8r6, the system arrives at

configuration c6 = (s1, s2
0, s5, s10, s9, s13, s3, s8

0) shown in Fig. 7.14(g). From this

configuration, after the move of r4, r7, r6, and r4 sequentially, r4 and r6 arrive at s4
0 and

s6
0, respectively, as shown in Fig. 7.14(h). The next move sequence is r1r5r3r7r5, and

the system arrives at configuration c8, shown in Fig. 7.14(i). At this configuration, all

robots, except r1 and r3, arrive at their private states si0, i = 2, 4, 5, 6, 7, 8, respectively.

From c8, r1 and r3 can finally move to their own private states.

7.5.3 Simulation on an Application Scenario in a Warehouse

In this subsection, we conduct a simulation on an application scenario in warehouse

transportation. As shown in Fig. 7.15(a), in this scenario, four unmanned ground ve-

hicles (UGVs) r1 − r4 are required to move to A − D, respectively. D1 − D7 are 7

collision regions in the warehouse. The lines in the collision regions are the paths for

the vehicles. For example, r3 is required to move through D4, D5, D2, D6, and D7 to

reach region C along the solid line. Based on our discretization method, the abstracted

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 125

(a) A simulation scenario in a warehouse.

1

2

3
4

A

B

C

D

s1

s2

s3
s4

s5

(b) Abstracted discrete model of the scenario.

FIG. 7.15: An application scenario in a warehouse. (a) Four UGVs r1−r4 are required
to move to four targets along the predetermined paths, respectively. D1 − D7 are the
collision region that two UGVs may collide. The lines in these regions are the paths
of the UGVs. (b) The abstracted discrete state transition system of (a) based on our

discretization method.

discrete model is given in Fig. 7.15(b), where D4 and D5 are abstracted to s4, and D6

and D7 are abstracted to s5.

Our simulation results are shown in Fig. 7.16. Suppose r2, r3, and r4 move into

D3, D4, and D6 first. This means they are at s3, s4, and s5, respectively. Based on our

method, r1 cannot move intoD1, so r1 is at s1. Fig. 7.16(a) shows a snapshot of the four

vehicles’ positions and their related discrete states. Then r2, r3, and r4 continue their

motion and move intoD4,D2, andD1. During their motion in these regions, the discrete

states are shown in Fig. 7.16(b). After passing through D5 and D1, r2 and r4 arrive at B

and D successfully. Then r1 can move into D1. A snapshot of the configuration of the

system and the related discrete states at this stage are shown in Fig. 7.16(c). Finally, r1

and r3 can arrive at A and C successfully, as shown in Fig. 7.16(d).

7.6 Discussion

Many approaches have been proposed to deal with deadlocks in multi-robot systems.

Some most related works are [130] and [162]. The comparison with [130] is given in

Chapter 6. In the sequel, we would like to give a comparison with [162].

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 126

(a) Configuration 1: Left: Vehicles’ positions;
Right: Discrete states.

(b) Configuration 2: Left: Vehicles’ positions;
Right: Discrete states.

(c) Configuration 3: Left: Vehicles’ positions;
Right: Discrete states.

(d) Configuration 4: Left: Vehicles’ positions;
Right: Discrete states.

FIG. 7.16: Simulation results of the warehouse scenario. (a) − (d): Different configu-
rations of the simulated system during its evolution based on the proposed algorithm.

1
s0 s1

s2

s3 s4 s5

s7

(a) Configuration c1 (b) Configuration c2

2 1
s0 s1

s2

s3 s4 s5

s7

2

FIG. 7.17: Example for the comparison of different methods. Solid arrows are the
transitions of r1 and dashed arrows are the transitions of r2.

The work in [162] proposed a variant of Banker’s algorithm to avoid deadlocks. The

idea is that a robot can move forward only when it can arrive at a private stage that will

not be occupied by other robots. The two methods are more conservative than ours.

Indeed, given a multi-robot system, suppose the set of all reachable configurations is R,

the sets of reachable configurations based on the methods of [162] and ours are R1 and

R2, then we have R1 ⊆ R2 ⊆ R. For example, consider the configuration shown in Fig.

7.17(a). When the system is at this configuration, r2 cannot move forward based on the

method in [162] since it cannot move to its next private state; but r2 can move forward

based on our method, resulting in a reachable configuration c2.

Chapter 7. Distributed Approach to Higher-order Deadlock Avoidance 127

7.7 Conclusion

In this chapter, we further investigate higher-order deadlocks in multi-robot systems

where each robot has a predetermined and closed path. Based on the discrete abstrac-

tion, we investigate the structural properties of higher-order deadlocks and conclude

that the highest order of a higher-order deadlock formed by N robots is N − 3. Then,

a distributed algorithm is developed to avoid collisions and deadlocks. To perform its

local algorithm in a distributed way, each robot needs to check the status of its collision

states beforehand and communicate with others via a multi-hop communication path.

Chapter 8

Distributed Approach to Robust

Control for Multi-Robot Systems

In Chapters 4, 6, and 7, we study motion control for multi-robot systems by assuming

that all robots are reliable. However, robots with priori known levels of reliability may

be used in applications to account for: 1) The cost in terms of unit price per robot

type since higher reliability comes at a higher price, and 2) the cost in terms of robot

wear in long term deployment due to the expensiveness of replacement (e.g., busses,

trams, and subways). In this chapter, dividing robots into reliable and unreliable, we

investigate robust control for multi-robot systems, which means that a failed robot has

the least influence on the whole system. For the system studied in Chapter 4, robustness

can be achieved by regarding the failed robots as static obstacles. However, for the

system studied in Chapters 6 and 7, some robots may be blocked inevitably by the

failed robots. Hence, robust control in such a system should minimize the number of

robots whose motion is blocked by the failed ones. Based on the LTS models obtained

in Chapter 5, in this chapter, to minimize the number of blocked robots, we propose

a distributed approach to robust control, which contains two kinds of local algorithms:

one for reliable robots and the other for unreliable ones.

128

Chapter 8. Distributed Approach to Robust Control 129

8.1 Introduction

In practice, robots may fail during their motion due to different reasons, such as hard-

ware wear, software failures, and cyber attacks. In case of robot failures, robust control,

i.e., how to deal with robot failures and minimize their detrimental effect on the system,

is important for robots. If robots can change their paths in motion, then as described

in Chapter 4, robust control against robot failures regards the failed robots as obstacles

during trajectory planning. However, for systems with fixed paths, robust control is sig-

nificant but not easy to achieve. Hence, in this chapter, we focus on robust control in

the system where each robot has a fixed path.

We assume that a system is configured with robots of different levels of reliabil-

ity since the following factors: (1) Robots of higher reliability are more expensive.

Sometimes, it is not cost-efficient to use robots of higher reliability. For example, for

non-critical tasks like warehouse operations, it is more cost-efficient to repair the failed

robots, rather than deploy higher-reliability robots; for dangerous environments like

mining, we prefer cheap robots since we can replace the failed robots once they are

broken and cannot be recovered. (2) For long-term robot deployment, hardware wear

of robots determines the robot reliability. As time elapses, performance of robots can

degrade gradually, and manufacturers oftentimes provide performance degradation in-

formation in the robots’ technical manuals. We label robots of higher reliability as

reliable ones, which are assumed to always work well, and those of lower reliability as

unreliable ones, which may fail unexpectedly.

Here we describe the reliability of robots in a non-stochastic manner. A probabilis-

tic analysis of robustness with respect to stochastic models of failures is left for future

work. In this chapter, we assume that a classifier is available that can a priori label

robots as reliable and unreliable ones. Such a classifier might be provided by the robot

manufacturer in terms of wear and/or robot models. By assuming collision and dead-

lock avoidance is always ensured based on Chapter 6 or 7, we propose two distributed

algorithms for robust control: one is for reliable robots, while the other is for unreli-

able ones. Under the proposed algorithms, the failure of an unreliable robot blocks the

minimum number of robots.

Chapter 8. Distributed Approach to Robust Control 130

The main contributions of this study are:

• We investigate robust control in a multi-robot system. The control aims to minimize

the number of stopped robots because of robot failures in multi-robot systems.

• We propose a distributed robust control approach, with which a robot only needs

some local information to perform its motion via detecting its own path and commu-

nicating with its neighbors.

The chapter is organized as follows. Section 8.2 describes the problem statement.

In Section 8.3, detailed algorithms for robust control are described. Simulation results

are given in Section 8.4. Finally, discussion and conclusion are provided in Section 8.5.

8.2 Problem Statement

Based on the discrete model described in Chapter 5, we formulate the robust control

problem studied in this chapter. First we introduce some notations. Given the set of

robots {ri : i ∈ IN}, the set of unreliable robots is {ri : i ∈ UN}, where UN ⊆ IN .

In the set of collision states Siα, the set of collision states that are passed by unreli-

able robots is denoted as uS
i
α, while the rest are denoted as rS

i
α. Therefore, uS

i
α =

∪j∈UN\{i}S
j
α ∩ Siα, and rS

i
α = Siα \ uSiα. The states in uS

i
α and rS

i
α are called unreliable

and reliable collision states, respectively.

Definition 28 (Blocking). A robot ri is said to block the motion of rj if ri stops at a state

of Sj . We say rj is blocked by ri.

For example, as shown in Fig. 8.1, if r1 stops at s1. Since s1 ∈ S6, r1 blocks the

motion of r6, and r6 is blocked by r1.

Definition 29 (Blocked Robots). Suppose an unreliable robot rk fails at a state s. Let

B1
k,s = {ri|s ∈ Si}, Bl+1

k,s = Bl
k,s ∪ {ri /∈ Bl

k,s|sjcur ∈ Si, rj ∈ Bl
k,s}, l ≥ 1. Then, the

set of blocked robots due to the failure of rk, denoted as Bk,s, is Bk,s = Bl0+1
k,s , where

Bl0+1
k,s = Bl0

k,s.

In the above definition, the number of recursions cannot be larger than N , meaning

that l0 < N . Therefore, the recursive definition is well-defined. Note that the definition

Chapter 8. Distributed Approach to Robust Control 131

r1

r2
r3

r4

r5

r6
s1

s2 s3

s4

s5

s6

32

41

5

6

FIG. 8.1: An example illustrating robot blocking and blocked robots. r1 is an unreli-
able robot and fails at s1, and thus r2 − r6 are blocked.

of blocked robots is dependent on the position where the unreliable robot rk fails. If

rk works well or fails at a private state, then the set of blocked robots is empty. When

rk fails at a collision state s, the robots in B1
k,s are blocked inevitably and are called

directly blocked robots. Robots in B∆
k,s = Bk,s \B1

k,s are blocked indirectly by rk.

For example, in Fig. 8.1, when r1 fails at s1, B1
1,s1

= {r4, r5, r6}. Since r3 is

blocked by r4, B2
1,s1

= B1
1,s1
∪ {r3}. r2 is blocked by r3, so B3

1,s1
= B2

1,s1
∪ {r2}.

There are no new robots that are blocked, so B4
1,s1

= B3
1,s1

. Hence, B1,s1 = B4
1,s1

and

B∆
1,s1

= {r2, r3}.

Definition 30 (Robustness). A multi-robot system is robust if ∀k ∈ UN and ∀s ∈ Sk,

B∆
k,s = ∅.

Note that if no robot fails in a system or a robot fails at a private state, then it always

has B∆
k,s = ∅, and hence the system is robust. In the sequel, our problem can be stated

as follows:

Problem 4. Given a multi-robot system {Ti}i∈IN with M unreliable robots {Tj}j∈UN
,

find an online and distributed control policy for the system such that the system is robust.

8.3 Robust Control

This section shows the development of two distributed robust control algorithms: one

is for reliable robots and the other is for unreliable robots.

Chapter 8. Distributed Approach to Robust Control 132

s1 s2 s3 s4 s5 s6 s7ri

FIG. 8.2: An example to show critical states and critical pairs. In this LTS model of
ri, s2, s3, s5, and s6 are collision states.

8.3.1 Robust Control Algorithms

Definition 31 (Critical State). Let Ti be the LTS model of ri. A state x ∈ Si is called

a critical state of ri if it satisfies: (1) x ∈ Siβ and Posi(x) ∈ Siα; or (2) x ∈ Siβ and

Prei(x) ∈ Siα.

We call the states satisfying the first condition pre-critical states, denoted as C i
1 ,

while call those satisfying the second condition post-critical states, denoted as C i
2 . Ac-

cording to our assumptions in Chapter 5, C i
1 6= ∅ and C i

2 6= ∅ for any robot ri. A

pre-critical state is the last private state of a sequence of private states, while a post-

critical state is the first private state of a sequence of private states. For example, as

shown in Fig. 8.2, C i
1 = {s1, s4} and C i

2 = {s4, s7}.

For any two states x, y ∈ Si, let x ≺i y (or y i� x) denote the relation that ri can

move from x to y within |Si| steps. The trace of x ≺i y is the sequence of states through

which ri passes from x to y. Since each robot in the system is performing persistent

motion, ∀x, y ∈ Si and x 6= y, we have x ≺i y and y ≺i x. Moreover, x ≺i y ≺i z if

and only if y is in the trace of x ≺i z. For example, in Fig. 8.2, we have s3 ≺i s4 ≺i s5.

Even though we have s3 ≺i s5 and s5 ≺i s4, the notation s3 ≺i s5 ≺i s4 is illegal since

s5 is not in the trace of s3 ≺i s4. Indeed, the trace of s3 ≺i s4 has only one state s4.

Definition 32 (Critical Pair). Let x ∈ C i
1 and y ∈ C i

2 . The ordered pair (x, y) is a critical

pair if all states between x and y are collision states. For any collision state s between

a critical pair (x, y), x is called the preceding critical state of s in Si, denoted as x <i s

(or s i> x), and y is called the succeeding critical state of s in Si, denoted as s <i y (or

y i> s).

The states between a critical pair form a maximal continuous subsequence of col-

lision states (MCSS-CS). In the following, the MCSS-CS bordered by a critical pair

(x, y) is denoted as Zi
(x,y) = {s | x <i s <i y}. Clearly, Zi

(x,y) ⊆ Siα. For example,

Chapter 8. Distributed Approach to Robust Control 133

in Fig. 8.2, the critical pairs of ri are (s1, s4) and (s4, s7), and Zi
(s1,s4) = {s2, s3} and

Zi
(s4,s7) = {s5, s6}. The preceding and succeeding critical states of s2 are s1 and s4,

respectively.

Proposition 5. ∀x ∈ C i
1 , ∃!y ∈ C i

2 , 3 (x, y) is a critical pair in Si, and vice versa.

Proof. Based on Definition 31, ∀x∈C i
1 , Posi(x)∈ Siα; based on Definition 32, only the

first private state starting from Posi(x) can form a critical pair with x. Similarly, ∀y ∈
C i

2 , Prei(y) is a collision state; searching back from it, the first private state constructs

a critical pair with y. Clearly, in either case, the first found state is unique.

This proposition states that any MCSS-CS is bordered by a unique critical pair.

Proposition 6. ∀s ∈ Siα, (1) ∃!x ∈ C i
1 , 3 x <i s. (2) ∃!y ∈ C i

2 , 3 s <i y.

Proof. On one hand, there exists a state x, x ∈ Siβ , such that ∀z, x ≺i z ≺i s, z ∈ Siα.

Indeed, x can be found as follows. Let ps = Prei(s), check ps and set ps = Prei(ps)

recursively until ps ∈ Siβ . Thus, the returned ps is the first preceding private state of s.

Clearly, it is the required preceding critical state of s and is unique. On the other hand,

we can similarly find the first succeeding private state of s. Let ss = Posi(s) and iterate

ss with ss = Posi(ss) until ss ∈ Siβ . The returned state is the succeeding critical state

of s. The first one is unique.

In the proof of Proposition 6, the states traversed by ps and ss, except the two end

states, constitute an MCSS-CS. Thus, this proposition states that any collision state s

only belongs to one MCSS-CS.

Proposition 7. (1) Siα = ∪x∈C i
1
Zi

(x,y); (2) Zi
(x1,y1) ∩ Zi

(x2,y2) = ∅ for x1 6= x2.

Proof. (1) On one hand, based on the definition of critical pair, ∀x ∈ C i
1 , Zi

(x,y) ⊆
Siα. Thus, ∪x∈C i

1
Zi

(x,y) ⊆ Siα. On the other hand, based on Proposition 6, each colli-

sion state belongs to an MCSS-CS. Since the states of all MCSSs-CS are ∪x∈C i
1
Zi

(x,y),

Siα ⊆ ∪x∈C i
1
Zi

(x,y). Hence, Siα = ∪x∈C i
1
Zi

(x,y). (2) If ∃s ∈ Zi
(x1,y1) ∩ Zi

(x2,y2), s has two

preceding critical states. This contradicts Proposition 6.

Chapter 8. Distributed Approach to Robust Control 134

The above proposition clarifies that for any robot ri, all of its MCSS-CS form a

partition of Siα.

Based on the above description, we can now focus on each MCSS-CS. For any

critical pair (x, y) in Si, let USix = Zi
(x,y) ∩ uS

i
α. If ri’s current state sicur ∈ Zi

(x,y), the

set Zi
(x,y),sicur

= {s | sicur ≺i s ≺i y} is called a block-risk set of ri. Indeed, Zi
(x,y),sicur

is

the remaining set of collision states in the current MCSS-CS that ri needs to traverse.

Theorem 9. If a multi-robot system satisfies that at any time, there are no robots whose

block-risk sets contain unreliable robots, then the system is robust.

Proof. Suppose that robot rk is an arbitrary unreliable robot and fails at s. If s ∈ Skβ ,

there are no robots that are blocked. If s ∈ Skα, the set of directly blocked robots is S1
k,s.

∀ri ∈ S1
k,s, suppose (x, y) is the critical pair of s in Si. Clearly, ri’s current state sicur

cannot be in Zi
(x,y); otherwise, ri’s block-risk set contains an unreliable robot rk. This

means that ri can only arrive at x eventually. Therefore, ri cannot block other robots

due to the failure of rk. Hence, B∆
k,s = ∅. Thus, the system is robust.

Based on Theorem 9, the policy of robust control can be defined as follows: For any

robot ri and any critical pair (x, y) in Si, (1) if ri enters Zi
(x,y) first, all unreliable robots

cannot move to ri’s block-risk set and (2) if there is an unreliable robot in Zi
(x,y), then ri

cannot move into Zi
(x,y) unless all unreliable robots move away. This policy can be im-

plemented as follows. Let Flag be a |uSα| ×N -dimensional Boolean matrix, denoting

whether an unreliable collision state is in some robot’s block-risk set. Flag(s, i) = 1

means that the unreliable collision state s is in the block-risk set of ri. The signals in

Flag only affect the motion of unreliable robots. Let Signu be a |uSα|-dimensional

Boolean vector, denoting the status of unreliable collision states. Signu(s) = 1 means

that the unreliable collision state s is occupied by an unreliable robot.

Now, we present the robust control framework. In the following description, we

assume that deadlock avoidance is presumptively ensured since the deadlock avoidance

strategy should be performed first.

Consider reliable robots. If a reliable robot ri is at x, x ∈ C i
1 , and is about to move

into Zi
(x,y), it must guarantee that there are no unreliable robots at the states in Zi

(x,y).

Chapter 8. Distributed Approach to Robust Control 135

Thus, ri first checks the value of Signu. If ∃s ∈ USix, 3 Signu(s) = 1, ri stops at x.

Otherwise, the negotiation process NEG(EX) is executed immediately. If it gets the

right to move, ri moves into Zi
(x,y) and sets Flag(s, i) = 1 for all s ∈ USix. This setting

will prevent unreliable robots from moving into ri’s block-risk set. Once ri leaves a

state z ∈ USix, Flag(z, i) = 0.

Consider unreliable robots. The motion of an unreliable robot rk should guarantee

two things: (a) no other unreliable robots can be in rk’s block-risk set and (b) rk cannot

move into another robot’s block-risk set. The former means that rk cannot be blocked in

a collision state by other unreliable robots, while the latter means that rk cannot block

other robots if rk′ fails at s. First, suppose rk is at x, ∀x ∈ C k
1 . To move forward, rk first

checks the value of Flag. If (i) ∃s ∈ USkx , j ∈ UN \ {k}, 3 Flag(s, j) = 1 (including

the case Signu(s) = 1), or (ii) ∃i ∈ IN \ {k}, 3 Flag(Posk(x), i) = 1, rk stops

at x. Note that the negation of the first condition guarantees that no other unreliable

robots can be in Zk
(x,y), and that of the second one guarantees that rk cannot move into

other robots’ block-risk sets. Therefore, rk can move to Posk(x). Then, ri executes

NEG(enable) immediately. If it gets the right to move, ri moves one step forward,

causing Flag(z, k) = 1 for all z ∈ USkx and Signu(Posk(x)) = 1. Thus, no other

unreliable robots can move into rk’s block-risk set. Hence, (a) is always guaranteed

during rk’s motion in Zk
(x,y). Second, suppose rk is at a collision state s, s ∈ Zk

(x,y).

As described before, (a) is always guaranteed once rk has moved into Zk
(x,y), so rk

only needs to guarantee (b) during the motion in Zk
(x,y). This can be implemented by

checking the values of Flag with respect to its succeeding state. If ∃i ∈ IN \ {k}, 3
Flag(Posk(s), i) = 1, rk stops at its current state s. Once rk leaves s, Signu(s) = 0

and Flag(s, k) = 0 if s ∈ USkx . Moreover, if it fails at s, then ∀z ∈ Zk
(x,y),s ∩ uS

k
α,

Flag(z, k) = 0.

The details are given in Algorithms 8 and 9. In Algorithm 8, Lines 2−7 treat the

situation in which the succeeding state is a private state. In such a situation, ri can

always move forward and release the corresponding signals (Lines 4−6). Lines 8−32

execute the situation in which no deadlocks are detected. It contains two sub-cases.

Lines 9−21 are executed when ri is at a preceding critical state. Once a robot arrives at

Chapter 8. Distributed Approach to Robust Control 136

a collision state, unreliable robots cannot move to its block-risk set. This is performed

by Lines 22−32.

Algorithm 9 is almost the same as Algorithm 8 except the following special aspects.

First, when it is at a preceding critical state (performing Lines 10−22), rk should check

not only whether unreliable robots exist, but also check the values of Flag with respect

to its succeeding state, i.e., Lines 12 and 13. Second, if rk is currently at a collision

state (performing Lines 23−36), it needs to check the values of Flag corresponding to

its succeeding state, i.e., Lines 24 and 25. Third, if rk fails at a collision state, it releases

its signals in Flag, i.e., Lines 39−40.

8.3.2 Effectiveness Analysis

In this part, the effectiveness of the algorithms is given.

Lemma 5. For any state s ∈ uSα,
∑

i∈UN
Flag(s, i) ≤ 1.

Proof. Suppose rk is an unreliable robot. ∀x ∈ C k
1 , rk can move to Posk(x) only when

Flag(i, s) = 0 for all i ∈ UN and s ∈ USkx based on Lines 12 − 16 in Algorithm

9. Once rk moves to Zk
(x,y), ∀s ∈ USkx , Flag(s, k) = 1. Thus, based on Line 12 in

Algorithm 9, other unreliable robots rk′ cannot move into their own Zk′

(x′,y′) containing

the states in USkx . Thus, if Flag(s, k) = 1, then ∀i ∈ UN \ {k}, Flag(s, i) = 0. Note

that there may be that ∀i ∈ UN , Flag(s, i) = 0, such that all unreliable robots are at

their private states. Hence,
∑

i∈UN
Flag(s, i) ≤ 1. Since uSα = ∪k∈UN

∪x∈C k
1
USkx ,

applying this result to each USkx , ∀k ∈ UN and ∀x ∈ C k
1 , we complete the proof.

This lemma states that for any unreliable collision state s, there exists at most one

unreliable robot, say rk, such that Flag(s, k) = 1. This means that s cannot be in two

unreliable robots’ block-risk sets simultaneously.

Lemma 6. If a reliable robot can move to a collision state, then it can eventually move

to a post-critical state.

Proof. Consider a reliable robot ri. For any collision state s ∈ Siα, suppose its critical

pair in Si is (x, y), i.e., x <i s <i y. We need to prove that during ri’s motion in Zi
(x,y),

Chapter 8. Distributed Approach to Robust Control 137

Algorithm 8: Robust control for a reliable robot ri.
Input: Ti = 〈Si, Σi,→i〉, its current state scur, signals Sign, Signu, and Flag.

1 Initialization: snext := Posi(scur) and determine the negotiation region X;
2 if snext ∈ Siβ then
3 execute the transition scur

move−→i snext;
4 if scur ∈ Siα then
5 Sign(scur) := 0;
6 Flag(scur, k) = 0 if scur ∈ uS

k
α;

7 scur := snext, snext := Posi(scur);
8 else if Sign(snext) = 0 ∧ no deadlocks then

/* There are no collisions or deadlocks. */
9 if scur ∈ C i

1 then
/* ri is at a pre-critical state. */

10 V := USiscur ;
11 if ∃s ∈ V,3 Signu(s) = 1 then
12 stop its motion for a proper duration;
13 else
14 Add ri to EX ;
15 if NEG(EX) = ri then
16 execute the transition scur

move−→i snext;
17 ∀z ∈ V , Flag(z, i) := 1;
18 scur := snext, snext := Posi(scur);
19 Sign(scur) := 1, EX := ∅;
20 else
21 stop its motion for a proper duration;

22 else
/* ri is at a collision state. */

23 Add ri to EX ;
24 if NEG(EX) = ri then
25 execute the transition scur

move−→i snext;
26 Sign(scur) := 0, Sign(snext) := 1;
27 if scur ∈ uS

i
α then

28 Flag(scur, i) := 0

29 scur := snext, snext := Posi(scur);
30 EX = ∅;
31 else
32 stop its motion for a proper duration;

33 else
/* Sign(snext) = 1 or there is a deadlock */

34 stop its motion for a proper duration;

Chapter 8. Distributed Approach to Robust Control 138

Algorithm 9: Robust control for an unreliable robot rk.
Input: Tk = 〈Sk, Σk,→k〉, its current state scur, signals Sign, Signu, and Flag.

1 Initialization: snext := Posk(scur) and determine negotiation region X;
2 if rk works well then
3 if snext ∈ Sβk then
4 execute the transition scur

move−→k snext;
5 if scur ∈ Skα then
6 Sign(scur) := 0, Signu(scur) := 0;
7 Flag(scur, k) = 0 if scur ∈ uS

k
α;

8 scur = snext, snext = Posk(scur);
9 else if Sign(snext) = 0 ∧ no deadlocks then

10 if scur ∈ C k
1 then

/* rk is at a pre-critical state. */
11 V := USkscur ;
12 if (∃s ∈ V, j ∈ UN \ {k},3 Flag(s, j) = 1) ||

(∃i ∈ IN \ {k},3 Flag(snext, i) = 1) then
13 stop the motion for a proper duration;
14 else
15 Add rk to EX ;
16 if NEG(EX) = rk then
17 execute transition scur

move−→k snext;
18 ∀z ∈ V , Flag(z, k) := 1;
19 scur := snext, snext := Posk(scur);
20 Sign(scur) := 1, Signu(scur) := 1, EX := ∅;
21 else
22 stop its motion for a proper duration;

23 else
/* rk is at a collision state. */

24 if ∃j ∈ IN \ {k},3 Flag(snext, j) = 1 then
25 stop the motion for a proper duration;
26 else
27 Add rk to EX ;
28 if NEG(EX) = rk then
29 execute transition scur

move−→k snext;
30 Sign(scur) := 0, Signu(scur) := 0;
31 Sign(snext) := 1, Signu(snext) := 1;
32 if scur ∈ uS

k
α then

33 Flag(scur, k) = 0

34 scur := snext, snext := Posk(scur); EX := ∅;
35 else
36 stop its motion for a proper duration;

37 else
38 stop its motion for a proper duration;

39 else if rk fails at a collision state scur then
40 ∀z ∈ Zk

(x,y),skcur
∩ uS

k
α, Flag(z, k) := 0 when scur ∈ Skα;

Chapter 8. Distributed Approach to Robust Control 139

no unreliable robots can move to Zi
(x,y),sicur

. First, suppose the reliable robot ri is at

x, x ∈ C i
1 . If ri can move to Posi(x), based on Lines 11 and 15 in Algorithm 8, no

unreliable robots can be at the states in USix. Once ri arrives at Posi(x), Flag(s, i) = 1,

∀s ∈ USix. Based on Lines 12 and 24 in Algorithm 9, no unreliable robots can move

to the states in USix. During ri’s motion in Zi
(x,y), there are no unreliable robots at

the states in USix ∩ Zi
(x,y),sicur

. Thus, ri can eventually move to y under the control of

deadlock avoidance strategy. Second, consider the general case. For any collision state

s of ri, there exist x0 ∈ C i
1 and y0 ∈ C i

2 such that x0 <i s <i y0. Thus, if it can move

to s, ri must first move to Posi(x0). By applying the previous result, ri can eventually

move to y0.

Lemma 7. If an unreliable robot can move to a collision state, then it can either move to

a post-critical state or fail.

Proof. Suppose rk is an arbitrary unreliable robot. For any collision state s, the critical

pair in Sk is (x, y), i.e., x <k s <k y. Thus, we need to prove that (1) Flag cannot

prevent the motion of rk and (2) no other unreliable robots can move to Zk
(x,y),skcur

. We

first consider that rk is at x, x ∈ C k
1 , and can move to Posk(x). On one hand, based

on Lines 12 − 22 in Algorithm 9, we have Flag(Posk(x), i) = 0 for all i ∈ IN and

Flag(s, j) = 0 for all s ∈ USkx , j ∈ UN . Once rk arrives at Posk(x), Flag(s, k) = 1

for all s ∈ USkx . Based on the proof of Lemma 5, for any state s in rk’s block-risk set,

Flag(s, j) = 0 where i ∈ UN \ {k}, and Flag(s, i), i ∈ IN \ UN , will eventually be 0

based on Lemma 6. Thus, Flag cannot block rk’s motion to the end. On the other hand,

based on Line 12 in Algorithm 9, with respect to other unreliable robots, during rk’s

motion in Zk
(x,y), Flag(s, k), s ∈ USkx , prevents other unreliable robots from moving

into rk’s block-risk set. Thus, rk can eventually move to y under the control of the

deadlock avoidance strategy if it does not fail. Second, consider the general case. For

any collision state s of rk, there exist x0 ∈ C k
1 and y0 ∈ C k

2 such that x0 <k s <k y0.

Thus, if it can move to s, rk must first move to Posk(x0). By applying the previous

result, rk can eventually move to y0 if it does not fail.

Theorem 10. The system is robust under the control of Algorithms 8 and 9.

Chapter 8. Distributed Approach to Robust Control 140

Proof. Note that if it fails at a private state, a robot cannot affect others. Thus, we only

need to consider the case in which an unreliable robot fails at a collision state. Based

on Lines 39 and 40 in Algorithm 9, an unreliable robot rk will reset its corresponding

signals in Flag to 0 when it fails at a collision state. Thus, based on Lemmas 6 and 7,

Flag cannot affect the motion of each robot eventually. Based on Lines 11 and 12 in

Algorithm 8 and Lines 12 and 13 in Algorithm 9, when rk fails at a collision state, all

directly blocked robots stop at their own preceding critical states of the failure location.

Thus, they cannot block other robots, i.e., the set of indirectly blocked robots is empty.

Hence, the system is robust.

8.3.3 Distributivity and Complexity Analysis

The control of multi-robot systems admits three types of architectures: centralized,

decentralized, and distributed. For centralized control, the whole system has only one

global controller; for decentralized and distributed control, each subsystem has a local

controller, but for distributed control, local controllers have communication. In this

subsection, we analyze the distributed nature of the proposed control policies.

According to the algorithms, to execute the related algorithm, each robot may need

to (1) retrieve the status of some collision states on its path and (2) communicate with

its neighboring robots.

On one hand, by checking its local signal variables Sign, Signu, and Flag, ri can

retrieve the status of the collision states on its path. Indeed, during the implementation,

the elements of these variables are divided into a set of separated local signals and stored

in robots. Each time a robot only changes some of the local signals. By checking its

owe path, ri can retrieve the values of Sign(s) and Signu(s) for s ∈ Siα, and Flag(s, i)

for s ∈u Siα. By communicating with its neighbors rk, ri can further retrieve the values

of Flag(s, k) for s ∈u Siα and s ∈ Sk.

For example, consider the system shown in Fig. 8.3(a). Suppose there are four

robots traversing this crossing and robot r1 is an unreliable robot. Suppose the four

robots are currently at s1
0 − s4

0. Consider the motion of r1 and r3 at the current config-

uration. Fig. 8.3(b) shows the case of r3’s motion. Since it is a reliable robot and no

Chapter 8. Distributed Approach to Robust Control 141

r1

r2

r3

r4
s1 s2

s3s4

s20

s10

s40
s30

4

3

2

1

(a) r1 − r4 are at s10−s40 and r1
is unreliable.

Sign(s2) : 0 Sign(s3) : 1Sign(s2) : 0 Sign(s3) : 0

s30
s3 s2

r33

Step 1: Retrieve local signals

for moving
Step 2: Change local signals

after moving

s30
s3 s2

r33

(b) Retrieval and change of local signals by r3.

Sign(s1) : 0 Sign(s4) : 0Flag({s1, s4}, 1)

s10

s1

s4

Signu(s1) : 0 Signu(s4) : 00 0

r1

1

s20
s2 s1

r2

2

Flag(s1, 2) = 0

s40
s4 s3

r4

2

Flag(s4, 4) = 0

Sign(s1) : 1 Sign(s4) : 0

s10

s1

s4

Signu(s1) : 1 Signu(s4) : 0

r1

1

Flag({s1, s4}, 1)

1 0

Step 1: Retrieve local signals for moving Step 2: Change local signals after moving

(c) Retrieval and change of local signals by r1.

FIG. 8.3: An example of local signal retrieval and maintenance for robust control. The
solid arrows denote the direct monitoring of local signals and the dashed arrows denote

the communication among robots to retrieve the related signals.

unreliable robot passes through its path, r3 only needs to check the status of its own col-

lision states, i.e., the values of Sign(s2) and Sign(s3) when it is at s3
0. Once r3 moves

to s3, it only changes the value of Sign(s3). Fig. 8.3(c) shows the case of r1’s motion.

Since r1 is unreliable, r1 needs to retrieve the signals Sign(s1), Signu(s1), Flag(s1, 1),

Flag(s1, 2), and Sign(s4), Signu(s4), Flag(s4, 1), Flag(s4, 4) when it is at s1
0. r1 can

retrieve the values of Sign(s1), Signu(s1), Sign(s4), Signu(s4), and Flag({s1, s4}, 1)

directly by monitoring its path. By communicating with r2 and r4, r1 can know the

values of Flag(s1, 2) and Flag(s4, 4). Once it moves to s1, r1 then changes the values

of Sign(s1), Signu(s1), Flag(s1, 1), and Flag(s4, 1).

In conclusion, Sign, Signu, and Flag are collections of local signals, rather than

global signals; a robot can retrieve their values by either checking its own paths di-

rectly or communicating with other robots. Besides, a local signal is maintained by an

individual robot each time.

Chapter 8. Distributed Approach to Robust Control 142

Lemma 8.1. Under the control of Algorithms 8 and 9, the information about local

signals needed by a robot is minimal.

Remark 8.2. Here, the information is counted in terms of the number of communication

messages. Each message contains the value of only one local signal. This means that if

a package contains the values of two or more variables, it should be regarded as two or

more communication messages.

Proof. Based on the definition of robustness, to avoid blocking other robots, a robot

cannot move into an MCSS-CS containing unreliable robots and an unreliable robot

cannot move into others’ block-risk sets. Thus, for any robust control scheme, a robot

should check at least the status of the MCSS-CS states that it needs to move into; an un-

reliable robot should first check its succeeding state to determine whether its movement

will lead it to the block-risk sets of other robots. Thus, such information is the minimal

amount needed by any robust control.

Line 11 in Algorithm 8 is used for robustness checking. Only when it is at a pre-

ceding critical state x does ri need the values of Signu(s), ∀s ∈ USix. In Algorithm 9,

Lines 12 and 24 indicate the procedures for robustness check. Line 12 checks the values

of Flag(s, j), ∀s ∈ USkx and ∀j ∈ UN , when rk is at a preceding critical state x, while

Line 24 checks the values of Flag(snext, j), ∀j ∈ IN \ {k}. The former is to check the

status of the states in MCSS-CS, while the latter is to check the status of the succeeding

state. Clearly, in both algorithms, the needed information is the minimal information

for robustness.

Based on above discussion, we can conclude that:

Corollary 1. The motion control of the system under the proposed algorithms is dis-

tributed.

To this end, we provide the complexity analysis of the proposed approach. Based on

the algorithms, a robot needs to perform three tasks to determine whether it can move

forward. The first one is to propagate communication among robots for deadlock avoid-

ance. The worst case is that the propagation is executed among all robots. Therefore,

Chapter 8. Distributed Approach to Robust Control 143

(a) Continuous path network.

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s4

s5

s6

s7

s8s9s10

s11
s13

s16

s17

s18

s19 s20

s21

s22

s15

s12

s14

1

2

4

3
5

6

7

(b) Discrete states.

FIG. 8.4: The system for our simulation. (a) A − G: intersections, and a − z: safe
boundaries of intersections. (b) Abstracted discrete states.

the complexity is O(N). The second one is to check the status of the states in its block-

risk set, if any. In the worst case, there exists only one private state, while the others are

collision states, resulting in a complexity of O(|Si|). The last one is to negotiate with

others, if needed, to determine which one can eventually move. The worst case is that all

robots in the system are trying to move to a same region; so the complexity of this case

is O(N). Hence, for robot ri, the complexity is O(|Si| + N). Let SN = maxi∈IN |Si|.
Since the robots in the system are moving in a distributed way, the final complexity of

our control method is O(SN +N).

8.4 Simulation Cases

In this section, we implement the algorithms in MATLAB. Some simulations for a sys-

tem with seven robots r1, r2, . . . , r7 are demonstrated. The closed paths are shown

in Fig. 8.4(a). A,B, . . . , G are seven intersections with coordinates A(0, 0, 11.5),

B(0, 0, 8.5),C(0, 0, 5.5),D(0, 0, 2.5),E(3, 0, 11.5), F (3, 0, 8.5), andG(3, 0, 2.5). Sup-

pose a safe radius of ρ = 1.5 units for each robot. Thus, the safe boundaries of these

intersections for the robots are given in lowercase letters. For example, for r1, the safe

boundaries ofA are a and b, while the safe boundaries ofA for r4 are k and l. Therefore,

the path segment pair (ab, kl) is a collision region of r1 and r4, and is abstracted as a

collision state s2, as shown in Fig. 8.4(b); so are other intersections. The discrete state

space of the system is shown in Fig. 8.4(b). Moreover, we assume r2, r6, and r7 are

Chapter 8. Distributed Approach to Robust Control 144

unreliable robots. Suppose the permutation of the configuration is (s1, s2, s3, s4, s5, s6,

s7), where si is the state of robot ri, i ∈ I7. The initial configuration c0 = (s1, s11, s14,

s8, s16, s18, s22). We consider the situation in which r2 fails at s3. Our experiments are

carried out in two stages. The first one is to simulate the system only with collision and

deadlock avoidance strategy, while the second one is to perform the simulation with the

proposed robustness algorithms.

In our simulation, since the seven robots are moving in a small region, we assume

that all of them are always connected transparently via communication and the transi-

tions are enabled synchronously for convenience. However, strictly based on our ap-

proach, at most {r1 − r4} need negotiation, so do {r1, r5} and {r1, r6, r7}.

8.4.1 Robot Motion without Robustness Algorithms

First, the system is controlled only by the collision and deadlock avoidance strategy.

Because of the concurrency, there are many evolution traces of the system. Fig. 8.5

shows eight snapshots of one evolution trace of the system, where the filled states denote

the current states of the robots.

Robot r2 fails at s3. First, all robots are able to move forward. Suppose after a

round of negotiations, r1 is allowed to move forward. Thus, r1 moves one step for-

ward. After the movement of r1, the new movable robots are r1, r2, . . . , r7. Suppose

r2 moves one step forward at this time. Next, we assume that r3, r4, . . . , r7 get the

right to move sequentially. Thus, the system reaches c1, as shown in Fig. 8.5(a). At

present, r2 fails at s3. Hence, the current movable robots are r3, r4, . . . , r7. Supposing

that NEG({r3, r4, . . . , r7}) = r3, r3 moves one step forward, which causes r4 to be

blocked. Moreover, in the next three rounds of negotiations, we assume that r5, r6, r7

win to move. Hence, as shown in Fig. 8.5(b), the system reaches c2. At this config-

uration, r3, r5, r6, and r7 can move, but only r3 moves one step forward because it

wins the negotiation. In the following evolution, r4 gets the priority to move first, and

then r5, r6, and r7. Thus, the system reaches c3, as shown in Fig. 8.5(c). Currently, r4

is blocked by r1. When the movable robots r3, r5, r6, and r7 move one step forward

again, the system is at c4, as shown in Fig. 8.5(d). From this configuration, r3 cannot

Chapter 8. Distributed Approach to Robust Control 145

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5
s19

1

2

43

5

6

7

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5

s19

1

2

4

3

5

6

7

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5

s19

1

2

4

3
5

6

7

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5
s19

1

2

4

3
5

67

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5
s19

1

2

4

3
5

6

7

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5
s19

1

2

4

3
5

6

7

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5
s19

1

2

4

3
5

67

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5

s19

1

2

4

3

5

6 7

(a) Configuration c1

(e) Configuration c5

(b) Configuration c2 (c) Configuration c3 (d) Configuration c4

(f) Configuration c6 (g) Configuration c7 (h) Configuration c8

FIG. 8.5: System evolution without robust control algorithm. (a) r2 is broken at s3.
(b) r1 is blocked. (c) r4 is blocked. (d) r3 is blocked.

move forward anymore since its move can cause a deadlock with r1, r2, and r4. Thus,

after the system reaches c4, r1, r2, r3, and r4 cannot move forward anymore. This fact

can also be observed from the following evolution of the system shown in Figs. 8.5(e),

8.5(f), 8.5(g), and 8.5(h). In conclusion, when r2 fails at s3, we have S1
2,s3

= {r1} and

S∆
2,s3

= {r3, r4}. Hence, the system is non-robust. The video of the simulation can be

found at https://youtu.be/xk1kAU-pQM0.

8.4.2 Robot Motion with Robustness Algorithms

Next, we simulate the system with the governance of our robustness algorithms. From

the simulation, all robots can move persistently except the robots that are directly de-

pendent on the failed one.

Robot r2 fails at s3. First, all robots can move. After the negotiation, suppose r1

gets the right to move forward and then moves one step forward. Based on Algorithm

8, Flag(s3, 1) = 1 and Flag(s5, 1) = 1 when r1 reaches s2. Based on Lines 12 and 13

of Algorithm 9, r2 and r6 cannot move to s3 and s5. Thus, the set of movable robots

https://youtu.be/xk1kAU-pQM0

Chapter 8. Distributed Approach to Robust Control 146

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5
s19

12

4

3

5

6

7

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5

s19

1

2

4 3

5

6

7

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5

s19
1

2

4

3
5

6

7

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5
s19

1

2

4

3

5

6 7

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5
s19

1

2

4

3

5

6

7

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5
s19

1

2

4 3

5

6

7

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5
s19

1

2

4

3

5

67

r1

r2

r3

r4

r5

r6

r7

s1

s2

s3

s5

s19

1

2

4

3

5

6 7

(a) Configuration c1

(e) Configuration c5

(b) Configuration c2 (c) Configuration c3 (d) Configuration c4

(f) Configuration c6 (g) Configuration c7 (h) Configuration c8

FIG. 8.6: System evolution under robust control algorithm. (c) r2 fails at s3. (g) r1

cannot move anymore.

is enable = {r1, r3, r4, r5, r7}. Suppose in the following negotiations, r3, r4, r5, and r7

get the right to move forward, respectively. Hence, the system reaches configuration c1,

as shown in Fig. 8.6(a). At c1, enable = {r1, r5, r7}. If NEG(enable) = r1, r1 moves

to s3, updating enable to {r1, r4, r5, r7}. Suppose r4, r5, and r7 get the right to move

in the following negotiations. Thus, the system reaches c2, as shown in Fig. 8.6(b).

At c2, r1, r3, r4, r5, and r7 can move forward. Suppose r1 is selected to move forward.

When r1 moves forward, Flag(s3, 1) = 0. Hence, the current set of movable robots

is {r1, r2, . . . , r5, r7}. With the negotiation, r2 is selected to move forward. When it

reaches s3, r2 fails and cannot move anymore. When r3, r4, r5, and r7 are selected to

move one step forward in the following negotiations, the system reaches c3, as shown

in Fig. 8.6(c). At c3, r1, r3, r4, and r7 are able to move. After the negotiation, r1 moves

one step forward. As a result, r1, r3, r4, r5, and r7 are able to move. Suppose r3, r4, r5,

and r7 are selected to move one step forward. Then, the system reaches c4, as shown

in Fig. 8.6(d). When the system is at c4, r1, r3, r4, r5, and r7 are able to move forward.

Suppose r1 is selected to move after the negotiation. When r1 moves one step forward,

Flag(s5, 1) = 0. However, r6 still cannot move since the unreliable robot r7 is on its

Chapter 8. Distributed Approach to Robust Control 147

path. Thus, the set of movable robots is {r1, r3, r4, r5, r7}. Suppose r3, r4, r5, and r7

are selected to move one step forward, and thus, the system reaches c5, as shown in Fig.

8.6(e). As shown in Figs. 8.6(f) and 8.6(g), the system next traverses c6 and c7 based on

a sequence of negotiations. When the system reaches configuration c7, r1 cannot move

forward anymore based on Lines 11 and 12 in Algorithm 8. With the movement of

r3, r4, . . . , r7, the system reaches c8, which is shown in Fig. 8.6(h). Clearly, r1 does not

block other robots’ motion. Hence, the system is robust. The video of the simulation

can be found at https://youtu.be/xk1kAU-pQM0.

8.4.3 Simulation Results on a Real Scenario

In this section, let us still consider the simulation abstracted from the real scenario

shown in Fig. 6.14. We further suppose vehicle 1 is an unreliable robot. When it moves

into the intersection, vehicle 1 fails, as shown in Fig. 8.7(a). At this time, vehicle 2

arrives at the intersection, but it cannot move into the intersection based on our proposed

algorithm and then stops, as shown in Fig. 8.7(b). Next, vehicles 3 and 4 can move into

the intersection since there are no collisions or deadlocks, as shown in Figs. 8.7(c) and

8.7(d). Continue their motion, vehicles 3 and 4 finally move away from the intersection

successfully, as shown in Figs. 8.7(e) and 8.7(f), respectively.

8.5 Conclusion and Discussion

Herein, we study robust control of systems with unreliable robots, where robustness

means that a failed robot can block the minimum number of robots in the system. T-

wo distributed robustness algorithms are proposed for various robots to guarantee the

robustness of the system. In addition to the theoretical analysis of the proposed robust-

ness algorithms, experimental simulations are demonstrated. The results also validate

the correctness of our approach.

The proposed concept of robustness is universal. Though the robustness we dis-

cussed in this work is for a system in which each robot has a predetermined path, it is

https://youtu.be/xk1kAU-pQM0

Chapter 8. Distributed Approach to Robust Control 148

(a) (b) (c)

(d) (e) (f)

FIG. 8.7: Simulation results of the real scenario. (a) Vehicle 1 failed at the intersection;
(b) Vehicle 2 cannot move into the intersection; (c) Vehicle 3 moves into the intersec-
tion; (d) Vehicle 4 can also move into the intersection; (e) Vehicle 3 moves away from

the intersection; (f) Vehicle 4 pass through the intersection.

also adaptable in systems where a robot has multiple paths and can reroute its motion

among these paths. In practice, even in such systems, a robot usually has only one route

to move along in some areas. Besides, there may exist the following scenario: A robot

at a state has two paths to select; the selection of the first one will cause a deadlock,

while there is an unreliable robot on the second path; with the proposed robust control,

the robot may not move forward. Thus, the proposed robustness can be widely used,

especially in the systems where robots have finite paths to move along. In the future,

we will conduct a detailed investigation of such scenarios.

Chapter 9

Hybrid Approach to Distributed

Motion Control for Multi-Robot

Systems

In Chapter 4, we study motion control from the low-level continuous control, which can

generate continuous inputs to robots directly. However, it is hard to deal with deadlocks

in some systems such as those studied in Chapters 6 and 7. While as shown in Chapters

6 and 7, high-level discrete models can avoid deadlocks efficiently, but cannot gener-

ate continuous inputs acting on robots’ actuators. Hence, in this chapter, combining

the discrete and continuous technologies studied in the previous chapters, we focus on

distributed hybrid motion control for the system with fixed paths.

9.1 Introduction

Most of the current approaches are either discrete or continuous. On one hand, discrete

methods usually abstract either the environment to a set of discrete states or the motion

of a robot to a set of discrete actions; based on the abstraction, a robot can determine

a sequence of discrete states or actions to execute. This kind of methods can simplify

the motion control problem, but the main drawback is that no robot kinematics or dy-

namics are considered, and thus cannot provide direct inputs, e.g., accelerator or torque,

149

Chapter 9. Hybrid Approach to Distributed Motion Control 150

to robot actuators. On the other hand, continuous methods usually depend on a robot’s

kinematic and/or dynamic equations and constraints. This kind of methods considers

the environment as a continuous Euclidean space, and generates continuous paths or

trajectories as well as the control inputs of actuators. However, for some complex envi-

ronment or large number of robots, the computation cost will be high; moreover, few of

these methods can deal with deadlocks efficiently.

To leverage the advantages of both discrete and continuous methods so as to not

only deal with deadlocks efficiently but also obtain control inputs to actuators of robots,

we focus on a hybrid approach to motion control of multi-robot systems where each

robot has a predefined closed path to make persistent motion. It combines discrete

supervisory control with continuous optimal control. For each local controller, based on

its transition system and the equal-length partition, on each receding horizon, an online

supervisory control policy first predicts whether the firing of its current transition would

cause collisions or deadlocks. In case that the current transition cannot fire because of

collisions or deadlocks, the robot will retrieve the robots it needs to wait for, as well as

their current states. Second, the continuous control component is designed to compute

optimal speed. It first predicts the motion time spent by other robots to resolve collisions

or deadlocks; then considering this time constraint, the robot builds a local optimization

problem and computes an optimal speed such that the robot can move to the next state as

smoothly as possible. In the proposed approach, each robot only needs to communicate

with its neighbors to retrieve immediately obtained information and hence can move

in a fully distributed way. The communication protocols are described in Petri nets,

and communication network can be reconfigured in real time based on the connectivity

among robots. The simulation results show the effectiveness of our approach.

The contributions of this work are:

• We propose a fully distributed method for motion control of multi-robot systems

where each robot has a predefined path. Each robot controls its motion only via

communicating with its neighbors to retrieve some information that can be obtained

immediately. Hence, robots can move in a fully distributed way.

Chapter 9. Hybrid Approach to Distributed Motion Control 151

• A local hybrid controller combining discrete and continuous control is designed for

each robot. By discretizing a path into discrete states, the controller can deal with

deadlocks as well as reduce the scale of the built local optimization problem; via

continuous control based on mathematical programming and SCP, the controller can

compute optimal speed to move.

• Communication protocols among robots are modeled by Petri nets. With the pro-

posed communication protocols, a robot can adapt its communication to different

neighbors during its motion. This guarantees the flexibility of the communication

network and thus the scalability of the system.

The chapter is organized as follows. Section 9.2 gives the problem statement; Sec-

tion 9.3 investigates the design and implementation details of the distributed hybrid ap-

proach; Section 9.4 models communication protocols using Petri nets for the proposed

approach; Section 9.5 describes the experiment simulations, and Section 9.6 concludes

the chapter.

9.2 Problem Statement

In this section, we first give more descriptions on the system we study and then state the

problem we focus on.

We assume that each path p = p(θ) is continuously differentiable. Indeed, the path

of a robot is the geometric curve of its trajectory. Based on physical laws, at any time

instant, the gradient of a trajectory at a position equals to the instant velocity at this loca-

tion. Since velocity function is continuous, the gradient of a path should be continuously

differentiable. Hence, the assumption is reasonable in real world. Note that even though

sometimes the given reference path is not continuously differentiable, the real generated

path, which is around the reference one, should be continuously differentiable. If a path

is not continuously differentiable, we can first use a continuously differentiable path to

approximate it using some methods, such as pure pursuit algorithms.

Definition 33. The speed of a robot is a scalar function with respect to time, mapping

from R+
0 to R+

0 , where R+
0 is the set of nonnegative real numbers.

Chapter 9. Hybrid Approach to Distributed Motion Control 152

Note that if the speed of a robot at time instant t is denoted as v(t), which is a

scalar variable, and the velocity is denoted as v(t), which is a vector, then we have

v(t) = ‖v(t)‖2.

Each robot is required to move along its path persistently without causing any colli-

sion and deadlock. Since the path is determined, the motion direction at each point for

a robot is fixed and we can guarantee motion safety only by controlling motion speed.

Hence, the motion control problem in our case can be described as follows.

Problem 5. Given a set of closed paths for robots in a multi-robot system, determine

proper speed for each robot such that robots can move along their own paths as smoothly

and quickly as possible without causing any collision or deadlock.

As described in previous chapters, high-level discrete control is an efficient way

to avoid collisions and deadlocks in such a system. However, they cannot deal with

speed optimization of robots directly. This may cause robots perform sharp stops with

very high deceleration, and a robot may stop and resume its motion frequently (will

give details in our experiments). Clearly, it is not a desired motion and is energy-

costly. Hence, in this chapter, we investigate a hybrid approach to robot motion. A

discrete control policy based on state transition systems is applied to avoid collisions

and deadlocks, and an optimal speed control strategy is used to deal with continuous

motion at each state. In the following section, we give the details of our approach.

9.3 Hybrid Approach to Motion Control

In this section, we describe a hybrid approach to solving the problem. The control

architecture of our approach is shown in Fig. 9.1. The motion controller obtains the

inputs from its sensors and neighbors, then computes the control inputs and feeds back

to the actuator. The control process contains two phases. The first one is discrete motion

control. At this phase, the robot can build and refine its discrete model by detecting

the environment, i.e., the path network of the system, and then determines transition

firing to avoid collisions and deadlocks by communicating with its neighbors. The

second one is continuous motion control at each discrete state. Based on the discrete

Chapter 9. Hybrid Approach to Distributed Motion Control 153

FIG. 9.1: Framework of the proposed hybrid motion control approach.

decision obtained at the first phase, the robot predicts the time it should wait at the

current state, and then computes proper acceleration for the actuator by building and

solving an optimization problem. In the sequel, Sections 9.3.1 and 9.3.2 describe the

related discrete control via transition systems and speed optimization with mathematical

programming, and Section 9.3.3 verifies the effectiveness of the proposed approach.

Before describing the details, we give some assumptions. As shown in Fig. 9.1,

the accurate motion of a robot relies on many aspects, such as the controller, actuator,

sensor, and communication network. Since we focus on the motion controller, we as-

sume that other components can always perform well. For example, the actuator can

respond correctly to its inputs, the sensors can always work well to monitor the environ-

ment correctly, and the communication network among robots can transmit messages

without loss and delay.

Chapter 9. Hybrid Approach to Distributed Motion Control 154

9.3.1 Discrete Transition Control

To deal with deadlocks and obtain continuous control inputs, as well as guarantee mo-

tion flexibility, we focus on hybrid control. In this subsection, by discretizing a path and

building a transition system, we describe discrete control of a robot. In the next subsec-

tion, we consider continuous control, where each time we only focus on the continuous

motion at the current state, rather than plan the motion for the whole path at once.

Based on Chapter 5, the transition system of ri is a tuple T i = 〈Si, T i〉, where

T i =→i,move. Recall that Si = Siα ∪ Siβ , where Siα and Siβ are sets of collision and

private states, respectively; ∀s ∈ Si, Prei(s) and Posi(s) denote the preceding and

succeeding states of s in Si, respectively, i.e., (Prei(s), s) ∈ T i and (s, Posi(s)) ∈ T i.
Suppose scur,i is the current state of ri, then (scur,i, Posi(scur,i)) is the current transition

of ri. Hence, the task at the discrete control phase is to determine whether ri’s current

transition can fire. In the sequel, we develop an algorithm to make a decision on whether

the current transition of a robot can be fired based on its transition system.

First, with the definitions of collision and deadlocks in Definitions 11 and 12 in

Chapater 6, we have:

Definition 34. Suppose ri is at s. Its current transition (s, Posi(s)) is enabled if there

are no collisions and deadlocks when ri is at Posi(s). A transition can fire if and only

if it is enabled.

Similar with the analysis in Chapter 6, to avoid collisions, each robot stores a set of

local signals which denote the status of its collision states. Let Signi denote the set of

signals identifying the status of collision states in Siα. ∀s ∈ Siα, Signi(s) = 1 if s is

occupied by other robots; otherwise, Signi(s) = 0. If the next state is a collision state

and its signal is 1, then the transition cannot be enabled. To avoid deadlocks, a robot

needs to communicate with its neighbors to check whether there exists any deadlock

cycle. Recall the process as follows. Suppose ri is at s and Signi(Posi(s)) = 0.

To check whether (s, Posi(s)) can be enabled, ri should further check whether there

would be any deadlock if it was at Posi(s). First, ri checks the state Posi(Posi(s)) ,

csi. If csi is occupied by a robot rj1 , then rj1 checks the status of Posj1(csi) , csj1 .

Similarly, if csj1 is occupied by another robot rj2 , then rj2 checks the state Posj2(csj1).

Chapter 9. Hybrid Approach to Distributed Motion Control 155

Continue this procedure until there exists a robot such that its next state is Posi(s)

or is not Posi(s) and not occupied. The former means there exists a deadlock, while

the latter means no deadlocks can occur at Posi(s) and the transition (s, Posi(s)) is

enabled. The procedure of deadlock detection corresponding to Posi(s) is denoted

as Dect(ri, Posi(s)). Dect(ri, Posi(s)) = 0 means that there is no deadlock, while

Dect(ri, Posi(s)) = k > 0 means that a deadlock is detected and rk is the last one in

the circuit, i.e., Posk(scur,k) = Posi(s), where scur,k is the current state of rk.

Since different robots may make decisions at the same time, simultaneous transition

firing may cause conflicts. Hence, an enabled transition may not really fire. Indeed,

the related robots need to negotiate with each other to determine whose transition can

finally fire. Note that different with Chapter 6, where a robot only needs to determine

whether it can move or not, in this chapter, if a robot cannot fire its current transition, it

should further predict the motion time at this state. Hence, before giving the negotiation

process, we need to introduce some definitions.

Definition 35 (Path Length). Suppose x0 and x are two points on a path. The path length

from x0 to x, denoted as l(x0, x), is the length of the path segment from x0 to x along

with the motion direction.

Given a path p(θ), l(x0, x) can be computed as l(x0, x) =
∫ θ1
θ0
‖dp(θ)

dθ
‖2dθ, where

x0 = p(θ0) and x = p(θ1). Given pi and Si of ri, its path segment from x to y is

denoted as li(x, y); Li(s) and xi,s denote the length and the end point of path segment

of pi represented by s, respectively.

Definition 36 (Hybrid State). The hybrid state of a robot ri is a quadruple (si, xi, vi,

Lri), where si ∈ Si, xi ∈ pi is a position on the path segment of si, vi is the speed at

xi, and Lri is the path length from xi to the end of si.

Suppose X is the negotiation region that may cause conflicts due to simultaneous

motion of multiple robots. At any time instant, the robots that are movable into/in X ,

denoted as EX , should communicate to determine the robots that can finally fire their

current transitions. The main idea for the negotiation is that the robot with shorter time

to its next state can check and make a decision first, and others make their decisions

based on the decisions made by the previous robots. The detailed algorithm is shown

Chapter 9. Hybrid Approach to Distributed Motion Control 156

Algorithm 10: Negotiation process to avoid conflicts.
Input : Movable robots EX , and their current hybrid states (si, xi, vi, Lri) and

signals Signi.
Output: MV and UM : robots that can fire and cannot fire, respectively;

Info = {(ri, rj, tw(i, j)), i ∈ UM}, where ri needs to wait for rj and
the predicted waiting time is tw(i, j).

1 Initialization: vsi = Signi,∀i ∈ EX ; MV = ∅; UM = ∅; Info = ∅;
2 Compute time to the next state: ti = Lri/vi,∀i ∈ EX ;
3 while EX 6= ∅ do
4 k = arg min

i∈EX

ti; s = Posk(sk);

5 if ∃j ∈ EX such that vsj(s) = 1 ‖ Dect(rk, s) = j based on vs then
/* rk will cause a collision or a deadlock if it

is at s after the moves of robots in MV . */
6 UM = UM ∪ {k}; EX = EX \ {k};
7 Dk = j; tw(k, j) = lj(xj, xj,s)/vj;
8 Info = Info ∪ {(rk, rj, tw(k, j))};
9 else

10 MV = MV ∪ {k}; EX = EX \ {k};
11 vsk(s) = 1;

in Algorithm 10. First, each robot predicts its time to arrive at its next state (Line 2).

This information is broadcast to robots in EX . Then, these robots check one by one to

determine whether they can fire their current transitions (Lines 3 − 11) based on the

temporary signals vsi, i ∈ EX , whose initial values are equal to Signi. Suppose among

the remaining robots in EX , rk is the robot with the shortest arriving time to its next s-

tate. Based on the temporary signal svi, ri checks whether its motion to s = Posi(scur,i)

causes any collision or deadlock after the firings of the former robots’ current transition-

s. If “yes”, rk is not allowed to fire its current transition when it reaches the end of the

state, so it computes the robots to be waited for and the corresponding waiting time

(Lines 5−8), which will be used in the continuous speed control. Otherwise, rk is al-

lowed to fire its current transition and change its temporary signal, i.e., svk(s) = 1 (Line

11). Once a robot has checked its motion, the robot is removed from EX .

Fig. 9.2 shows an example to illustrate the negotiation process. At the current

configuration shown in Fig. 9.2(a), all local temporary signals in vsi, i = 1, 2, 3, 4,

are 0, and the predicted motion time to the end of these robots’ current states are t1 =

1, t2 = 1.2, t3 = 1.1, and t4 = 0.9 (Line 2). Hence, r4 performs the first iteration of the

Chapter 9. Hybrid Approach to Distributed Motion Control 157

r1

r2

r3

r4
s1

s2 s3

s4 s5

1

2

3

4

(a) Current Configuration c0.

r1

r2

r3

r4
s1

s2 s3

s4 s5

1

2

3

4

vs4(s4) = 1

(b) First negotiation performed
by r4.

r1

r2

r3

r4
s1

s2 s3

s4 s5

1

2

3

4

vs4(s4) = 1vs1(s1) = 1

(c) Second negotiation performed
by r1.

r1

r2

r3

r4
s1

s2 s3

s4 s5

1

2

3

4

vs4(s4) = 1vs1(s1) = 1

vs3(s3) = 1

(d) Third negotiation performed
by r3.

r1

r2

r3

r4
s1

s2 s3

s4 s5

1

2

3

4

vs4(s4) = 1vs1(s1) = 1

vs3(s3) = 1

Info = {r2, r1, tw(2, 1)}
D2 = {1}, tw(2, 1)

(e) Fourth negotiation performed by r2.

FIG. 9.2: An example to illustrate the negotiation process. (a) The current configura-
tion for negotiation, and t1 = 1, t2 = 1.2, t3 = 1.1, t4 = 0.9; (b) r4 starts to perform
the first iteration of negotiation and it can move forward, causing vs4(s4) = 1; (c)
r1 performs the second negotiation and determines that it is movable, and changes
vs1(s1) = 1; (d) the third iteration is done by r3 and r3 determines its move and sets
vs3(s3) = 1; (e) at the fourth iteration of the negotiation, r2 cannot move forward

based on vs4(s4), vs3(s3), and vs3(s3), and needs to wait for the move of r1.

negotiation, i.e., Lines 5 − 11, based on Line 4 in the algorithm. Since vs3(s4) = 0 and

vs1(s1) = 0, r4 executes Lines 9 − 11, causing vs4(s4) = 1, as shown in Fig. 9.2(b).

At this moment, MV = {4}. Second, r1 executes the second iteration. Similarly, r1

finds that it can move one step forward, resulting in vs1(s1) = 1 and MV = {1, 4},
as shown in Fig. 9.2(c). Third, as shown in Fig. 9.2(d), r3 begins the third iteration.

Currently, sv2(s3) = 0 and Dect(r3, s3) = 0. Hence, r3 is allowed to move and then

vs3(s3) = 1 and MV = {1, 3, 4}. At last, r4 needs to check whether it can move one

step forward based on the former negotiations. Since sv3(s3) = sv4(s4) = sv1(s1) = 1,

Dect(r2, s2) = 1, meaning that a deadlock will occur if r2 also moves to s2 and r2 needs

to wait for r1 moving away from s2. Hence, as shown in Fig. 9.2(e), the fourth iteration

results in D2 = 1, UM = {2}, and the waiting time tw(2, 1) = l1(x1, x1,s2)/v1 =

(Lr1 + L1(s1) + L1(s2))/v1 based on Lines 6 − 8 in Algorithm 10.

Chapter 9. Hybrid Approach to Distributed Motion Control 158

Algorithm 11: Decision for transition firing of ri.
Input : Discrete model T i, current state si, and negotiation region X .
Output: decision = 0: ri cannot fire its current transition due the occurrence of

collisions or deadlocks; decision = 1: ri cannot fire its current
transition due to the negotiation process; and decision = 2: ri can fire
its current transition.

1 MV = ∅, UM = ∅, Info = ∅;
2 if Posi(si) ∈ Siβ then
3 decision = 2;

4 else if Signi(Posi(si)) = 1 then
/* ri’s motion will cause a collision. */

5 decision = 0;

6 else
7 if Posi(Posi(si)) ∈ Siα & Dect(ri, Posi(si)) > 0 then

/* ri’s motion will cause a deadlock. */
8 decision = 0;

9 else
10 (si, Posi(si)) is enabled and add i to EX ;
11 {MV , UM , Info} = Algorithm 10;
12 if ri ∈MV then

/* ri can fire its current transition. */
13 decision = 2;

14 else
/* ri cannot fire its current transition. */

15 decision = 1

16 return {MV , UM , Info, decision};

Based on the above analysis, Algorithm 11 shows the procedure of robot ri to deter-

mine whether its current transition can actually fire. If the next state is a private state,

the current transition can always be enabled and fired (Lines 2 and 3). However, if the

next state is occupied by another robot, the current transition cannot be enabled (Lines 4

and 5). In other cases, if a deadlock is detected, the current transition cannot be enabled

(Lines 7 and 8); otherwise, ri needs some negotiation to determine whether its transition

can fire (Lines 10 − 15).

Algorithm 11 focuses on the discrete decision in order to avoid collisions, deadlocks,

and conflicts. Next, we describe the procedure for continuous speed control.

Chapter 9. Hybrid Approach to Distributed Motion Control 159

A

B
C

xi(t)

Lri

motion time from B to C:
ti(li, Li(s), s, t)

length from A to B:
li = li(xi, s, t)

FIG. 9.3: An illustration of notations related to discrete state and continuous path. Arc
ùABC is the path segment abstracted to s, where A is the start of s and C is the end of
s. B(xi(t)) is the position of ri at t; li(xi, s, t) is the arc length of÷AB; Lri is the arc
length of÷BC; Li(s) = li(pi, s, t) + Lri is the length ofùABC; and ti(li, Li(s), s, t) is

the motion time on the arc÷BC.

9.3.2 Continuous Speed Adjustment

In this subsection, we describe the algorithm for speed adjustment of a robot when its

current transition cannot fire. Some notations are used during our descriptions. Given a

discrete state s ∈ Si where ri is at time instant t, suppose xi(t) is the position on the path

segment of s at t, the path length from the start of s to xi(t) is li(x, s, t). The speed and

acceleration at xi(t) are vi(li, s, t) and ai(li, s, t), respectively. Motion time from xi(t)

to the end of s is ti(li, Li(s), s, t). Recall that Li(s) is the length of ri’s path segment

of s. Fig. 9.3 shows an illustration of these notations. For simplicity and without

ambiguity, we omit s and t in the notations during our discussion. Hence, the path

length of s is Li; the speed and acceleration at xi(t) are vi(li) and ai(li), respectively;

motion time from xi(t) to xi,s (the end of s) is ti(li, Li).

In this chapter, real-time and distributed speed adjustment is performed based on

the MPC strategy, where at each time instant, the speed of robot is computed from a

local optimization problem. In the sequel, we introduce the construction of the local

optimization problem of ri at the current time instant t0.

To build the distributed optimization problem, we first describe the kinematic equa-

tions of a robot. Suppose the current hybrid state of ri is (s, xi(t0), vi(l0), Lri), where

l0 = li(xi, s, t0) is the path length from the start of s to xi(t0), then its kinematic equa-

tions can be described as follows.

ti(l0, Li) =

∫ l=Li

l=l0

1

vi(l)
dl, (9.1)

1

2
v2
i (Li)−

1

2
v2
i (l0) =

∫ l=Li

l=l0

ai(l)dl, (9.2)

Chapter 9. Hybrid Approach to Distributed Motion Control 160

where ti(l0, Li) is the motion time from the current position x(t0) to the end of s.

Indeed, we have

vi(l) =
dl

dti(l)
.

This means

dti(l) =
1

vi(l)
dl.

Hence, according to the theory of integral, we have

∫ ti(l0,Li)

0

dti =

∫ Li

l0

1

vi(l)
dl,

which generates (9.1).

Since

ai(l) =
dvi(l)

dti(l)
and dti(l) =

dl

vi(l)
,

we have

ai(l) =
vi(l)dvi(l)

dl
=

1

2

d[v2
i (l)]

dl
.

This implies (9.2).

In the sequel, we give the procedure to build the local optimization of a robot.

First of all, in case that its current transition cannot fire, a robot needs to predict

the time that other robots spend in passing through their required states. There are two

situations that a robot cannot fire its current transition. The first one is that the current

transition is enabled but cannot fire since simultaneous firing causes a conflict, and the

second one is that the current transition cannot be enabled.

We first propose an algorithm to compute waiting time for the former situation. The

main process is that a robot ri may need to wait for the move of a robot rj in UM ,

then rj also needs to wait for the move of another robot in UM . Continue the process

until the waited robot is in MV . Algorithm 12 shows the procedure for ri to compute

its waiting time based on the negotiation process. At first, ri checks the robot, say rj ,

that it needs to wait for (Line 1). Then, rj further checks the robot it needs to wait

Chapter 9. Hybrid Approach to Distributed Motion Control 161

Algorithm 12: Computation of ri’s waiting time during its negotiation process.
Input : MV , UM , and Info based on Algorithm 10.
Output: Waiting time tw(i).

1 Infoi = (ri, rj, tw(i, j));
2 tw(i) = tw(i, j); /* ri needs to wait for the former robot rj

in the negotiation process. */
3 i1 = j;
4 while i1 ∈ UM do
5 Info′ = (ri1 , ri2 , tw(i1, i2)); /* ri1 needs to wait for ri2 based

on the negotiation process */
6 tw(i) = max{tw(i), tw(i1, i2)};
7 i1 = i2;

for. Iteratively, the procedure stops when a robot can fire its current transition, i.e., the

while-loop in Lines 4−7 .

Next, we describe the computation of waiting time in the second situation. To enable

its current transition, a robot depends on the move of some other robots, called enable-

dependent robots.

Definition 37. The set of enable-dependent robots of ri at state s, denoted as Di(s), is a

set of robots that ri needs to wait for in order to enable its current transition (s, Posi(s)).

A robot ri can determine its dependent robots Di(s) via a sequence of communi-

cation. First, in order to check whether it can move to Posi(s) , csi, ri determines

the robot it needs to directly wait for based on Signi(csi) and Dect(ri, csi). There are

two cases: (1) If it finds csi is occupied by a robot rj1 , ri sends a message, including

the information of csi, to rj1 to inform that rj1 needs to move to Posj1(csi) , csj1 .

Thus, when rj1 receives this message, it checks whether it can move to csj1 . (2) If ri

receives a message from robot rj1 during Dect(ri, csi) and identifies a deadlock, then

ri sends the checked result and the information of csi to rj1 , and rj1 begins to check

whether it can move to csj1 . This means the deadlock can only be resolved when rj1

moves to csj1 . Hence, in both cases, rj1 receives a message from ri and needs to check,

if needed, whether it can arrive at csj1 . This is done via checking Signj1(csj1) or

executing Dect(rj1 , csj1). Like ri, rj1 can retrieve the robot it needs to wait for, say

rj2 , and sends a notification message to rj2 . Note that rj2 is also an enable-dependent

robot of ri. Similarly, after receiving the message, rj2 needs to check whether it can

Chapter 9. Hybrid Approach to Distributed Motion Control 162

1

2 5

s0

s1

s2

s4

4

s3

3

8

6

s5

s6

s7

s8

s9

7

À

ÀÁ

Â Ã

Ã Ä

Ä Å

ÆÇ

(a) Current configuration.

Dect(r1, s1)

s5 =
Pos4(s1)

s6 =
Pos5(s5)

Pos8(s6)

s1 =
Pos1(s0)

S
ig
n
4 (s

5)

r1 r4

r5r8
Dect(r5, s6)

(v8, l8(1))

(v8, l8(1)), (v5, l5(1))
(v4, l4(1))

(v8, l8(1))
(v5, l5(1))

(b) Retrieval of enable-dependent robots.

FIG. 9.4: An illustration of enable-dependent robots and their retrieval. (a) The current
configuration, where the arrows with n© denote the transition of rn; (b) The retrieval

process, where dashes arrows denote the communication between robots.

move to Posj2(csj1) , csj2 and retrieves the robot to wait for based on Signj2(csj2)

or Dect(rj2 , csj2). One by one until there exists a robot that can move to the required

state. In this way, ri can retrieve the robots to wait for at s. During the sequence of

communication, a robot also sends back its current speed and the path length required

to move, which will be used by ri to compute its waiting time.

For example, consider the configuration shown in Fig. 9.4(a). At the current time,

r1 is at s0. By performing Dect(r1, s1), r1 receives a message from r4 and identifies a

deadlock. Hence, r1 sends a notification message to r4 and r4 begins to check whether

it can move to s5 (i.e., Pos4(Pos1(s0))). After checking Sign4(s5), r4 detects r5 at s5

(i.e., Sign4(s5) = 1) and then sends a message to r5. r5 needs to determine whether it

can move to s6 when it receives this message. Since s6 is not occupied by any robots,

r5 performs Dect(r5, s6). At the end of Dect(r5, s6), r5 receives a message from r8 and

identifies a deadlock. So r5 notifies r8. Assume that Pos8(s6) is a private state. Then r8

will send a message, including the path length needed to move, to notify r5 that it can

pass through s6. Consequently, r5 will send back to r4 this information plus its required

moving path length, and r4 also sends the related information to r1. Hence, r1 retrieves

its dependent robotsD1(s0) = {r4, r5, r8}, as well as their path lengths needed to move.

Fig. 9.4(b) shows the retrieval process.

Based on the definition of enable-dependent robots, ri cannot leave s until all robots

in Di(s) arrives at the required states. Hence, ri needs to predict its least motion time

at s, which is computed as follows: ∀rj ∈ Di(s), suppose its speed and path length

Chapter 9. Hybrid Approach to Distributed Motion Control 163

needed to move are vj and lj(i), then its predicted motion time is ptj = lj(i)/vj . In the

sequence of enable-dependent robots, the last robot robot, say rk, is a movable robot.

So its waiting time can be obtained via its negotiation process based on Algorithm 12.

Thus, ri’s waiting time at s is tw(i) = max{ptj for rj ∈ Di(s), tw(k)}.

Based on the waiting time, we can now give the local optimization problem of ri

at the current time t0, which is shown in (9.3). Recall that l0 = li(xi, s, t0) is ri’s path

length from the start of s to its current position xi(t0) and vi(l0) is the current speed.

(9.3a) is the objective function. In this work, we consider two requirements: move as

smoothly as possible, which can guarantee stability and smoothness; and pass through

the state as soon as possible, which can give way to others. Hence, the objective function

contains two parts: the former is for motion performance and the latter for motion time,

where w1 and w2 are weights. Constraint (9.3b) describes the kinematics of the robot.

Constraints (9.3c) and (9.3d) describe the physical constraints of the robot. It is the

inherent property of a robot. At last, constraint (9.3e) describes the constraint to avoid

collisions and deadlocks, meaning that ri cannot move into the next state before the

waiting time tw(i).

min
ai

w1

Ê∫ l=Li(s)

l=l0

ai(l)2dl + w2

∫ l=Li(s)

l=l0

1

vi(l)
dl (9.3a)

subject to: ∀L ∈ [L0, Li(s)],

vi(L)2

2
=
vi(l0)2

2
+

∫ l=L

l=l0

ai(l)dl, (9.3b)

0 ≤ vi(L) ≤ vmax, (9.3c)

amin ≤ ai(L) ≤ amax, (9.3d)

tw(i) ≤
∫ l=Li(s)

l=l0

1

vi(l)
dl. (9.3e)

To deal with the integral equations in the above problem, we would like to

find a numerical solution. Hence, we first discretize the path segment of s: 0 =

L0, L1, . . . , LK = Li(s), where h = Li(s)/K and ∀k ∈ IK = {0, 1, . . . , K}, Lk = kh.

After discretization, computation only happens at each discrete point, so ∃k0 ∈ IK such

Chapter 9. Hybrid Approach to Distributed Motion Control 164

that l0 = k0h. Then, the control variable ai(L) is discretized via piecewise constant:

∀L ∈ [Lk, Lk+1), ai(L) = ai(Lk). To guarantee safety always, the discrete step length

should satisfy that it is possible to stop a robot between two successive steps in the worst

case. This means that h should satisfy: 2|amin|h ≥ v2
max.

Let bi(L) = vi(L)2, bki = bi(Lk), and aki = ai(Lk), ∀k ∈ IK . Substituting aki into

(9.3b), we have

bi(L) = bki + 2aki (L− Lk),∀L ∈ (Lk, Lk+1]. (9.4)

This implies

∫ l=Lk+1

l=Lk

1

vi(l)
dl =

∫ l=Lk+1

l=Lk

1È
bki + 2aki (l − Lk)

dl = 2h/(
È
bk+1
i +
È
bki), (9.5)

and

∫ l=Li(s)

l=l0

1

vi(l)
dl =

K−1∑

k=k0

∫ l=Lk+1

l=Lk

1

vi(l)
dl = 2h

K−1∑

k=k0

1È
bk+1
i +
È
bki

(9.6)

Hence, the optimization problem in (9.3) is reformulated as the following discretized

form:

min
ai,bi

w1

√
h‖ai‖2 + w2

K−1∑

k=k0

2hÈ
bk+1
i +
È
bki

(9.7a)

subject to:

Abi − 2h ai = 0 (9.7b)

bi(1) = v2
i (k0) (9.7c)

0 ≤ bi ≤ v2
max1, (9.7d)

amin1 ≤ ai ≤ amax1, (9.7e)

tw(i)−
K−1∑

k=k0

2hÈ
bk+1
i +
È
bki

≤ 0, (9.7f)

where bi = (bk0i , b
k0+1
i , . . . , bKi)T and ai = (ak0i , a

k0+1
i , . . . , aK−1

i)T are variables; A =

(Akj)(K−k0)×(K−k0+1) satisfies ∀k = 1, 2, . . . , K−k0, Akj = −1 for j = k, Akj = 1 for

Chapter 9. Hybrid Approach to Distributed Motion Control 165

j = k + 1, and Akj = 0 for others; vi(k0) is the current speed; and 0 and 1 are vectors

of zeros and ones with proper dimensions, respectively.

Remark 10. Note that in practice, the speed can be zero, meaning that the robot has to

stop its motion to wait for others. To deal with this case, we assign a sufficiently large

number, e.g., 106, to 1/v if v = 0.

Clearly the local optimization problem (9.7) is non-convex due to constraint (9.7f),

which can be regarded as a difference between two convex functions. Next, we apply

SCP to solve it approximately. In the sequel, we describe the detailed procedure (9.7).

Let g(bi) =
∑K−1

k=k0
2h√

bk+1
i +
√
bki

, and ∇g(bi) is the gradient of g(bi). Its first-order

Taylor approximation at a given point mbi can be described as g(mbi)+∇g(mbi)T (bi−
mbi). Hence, the convex approximation of (9.7) at mbi, denoted as P (mbi), can be

described as follows.

min
ai,bi

w1

√
h‖ai‖2 + w2

K−1∑

k=k0

2hÈ
bk+1
i +
È
bki

subject to:

Abi − 2h ai = 0,bi(1) = v2
i (k0),

0 ≤ bi ≤ v2
max1, amin1 ≤ ai ≤ amax1,

tw(i)− [g(mbi) +∇g(mbi)T (bi − mbi)] ≤ 0.

(P (mbi))

Based on the idea of SCP, the optimization problem (9.7) can be resolved by solving

(P (mbi)) iteratively. The details are given in Algorithm 13. At each iteration (Lines

3−10), the given point is set as the solution of the former iteration (Line 10). The

iteration stops if it reaches the maximal iteration number (Line 2) or the error of two

successive solutions/optimal values is less than the given precision (Line 7). Due to

the approximation of the non-convex constraint (9.7f), P (mbi) may have no optimal

solution. However, our discretization guarantees that a robot can always stop at the

end of a state if needed. This means, Problem (9.7) has feasible solutions at any time.

Hence, in our approach, if (9.7) has no optimal solution, we would compute a feasible

solution such that the robot stops at the end of its current state (Lines 11−13).

Chapter 9. Hybrid Approach to Distributed Motion Control 166

Algorithm 13: SCP procedure to solve (9.7).
Input : Current speed vi(k0), waiting time tw(i), number of steps K, step length

h, maximal number of iterations M , and precision ε.
Output: bi and ai.

1 Initialization: m = 0, mbi = 0, mobji = 0;
2 while m ≤M do
3 Compute g(mbi) and ∇g(mbi) ;
4 Build the convex approximation (P (mbi));
5 Solve (P (mbi));
6 if there exists an optimal solution bi and ai then
7 if ‖bi − mbi‖2 ≤ ε ‖ |obji − mobji| ≤ ε then
8 return bi and ai;
9 else

10 m = m+ 1; mobji = obji; mbi = bi ;

11 else
/* Compute a feasible solution so that ri stops

at the end of its current state. */
12 ∀k ∈ {k0, . . . , K − 1}, aki = −vi(k0)2/(2 ∗ (K − k0) ∗ h),

bk+1
i = bki − vi(k0)2/(K − k0);

13 return bi and ai;

Algorithm 13 describes the optimal speed computation at step k0 based on the de-

tected environment at k0. Once the acceleration is obtained, the robot can move along

its path based on the kinematic equations (9.4). However, because of the change of other

robots, the robot needs to update its speed real-timely based on the new hybrid states of

other robots. Real-time speed control is realized via MPC. Detailedly, at each step, only

the first element of the acceleration vector is applied; once it arrives at the next step,

the robot updates its acceleration by recomputing the acceleration with the new hybrid

states of other robots. Hence, the complete speed control at a discrete state is given in

Algorithm 14. Lines 3−9 perform the discrete control and compute the waiting time: if

the current transition is not enabled, compute waiting time based on enable-dependent

robots (Lines 5−7); if the current transition is enabled but cannot fire, compute waiting

time based on Algorithm 12 (Lines 8−9).

At last, we further discuss motion direction control along the given path in practice.

Theoretically, since the path is determined, the motion direction at each position is pre-

determined. However, such motion direction usually oscillates greatly for curvic path

Chapter 9. Hybrid Approach to Distributed Motion Control 167

Algorithm 14: MPC-based speed control at state s.
Input : Physical constraints: vmax, amax, and amin; current hybrid state at the

start of s: (s, x(0), v0, L); precision: ε.
/* Once ri arrives at the start of s, do: */

1 Initialization: set proper step length h and number of steps K, k0 = 0,
vi(k0) = v0;

2 while k0 < K do
3 tw(i) = 0 ;
4 Call Algorithm 11;
5 if decision = 0 then
6 Retrieve dependent robots Di(s);
7 Compute waiting time tw(i);

8 else if decision = 1 then
/* Retrieve the sequence of waiting robots during

the negotiation process. */
9 tw(i) = Algorithm 12;

10 Call Algorithm 13 and return bi, ai;
11 ak0i = ai(1); /* select the first value. */

12 t[k0 → k0 + 1] =

√
bi(2)−

√
bi(1)

ai[k0]
; /* compute the duration of

the current step. */
13 Move from Lk0 to Lk0+1 under (9.4) for a duration of t[k0 → k0 + 1];
14 Update current step k0 = k0 + 1;

15 Update its current hybrid state to (s, x(k0h),
È

bi(2), L− k0h)

and cannot guarantee motion stability of a robot. In this work, due to its simplicity and

efficiency, pure pursuit algorithm is applied to determine the motion direction. Once the

acceleration at step k0 is determined, the pure pursuit method is performed by regarding

x(Lk0) and x(Lk0+1) as the start and the destination positions, respectively.

Take a 2D case as an example to introduce pure pursuit method briefly (refer to [133]

for more details). As shown in Fig. 9.5, xOy is the body frame of the robot where y

axis is the current motion orientation of the robot, the solid curveOAT is the predefined

path, O is the current position x(Lk0), T is the destination position (i.e., x(Lk0+1) in

our case), and A is a point on the path such that the distance between A and O is

da, i.e., the look-ahead distance. Based on the geometry, we have x2 + y2 = d2
a and

(r − x)2 + y2 = r2. Hence, the curvature of the real motion path, i.e., the bold dashed

curve in Fig. 9.5, can be written as: γ = 1/r = 2x/d2
a. Let θ be the angle difference

Chapter 9. Hybrid Approach to Distributed Motion Control 168

O

A(x,y)

x

y
T

da

r

r

θ

v

FIG. 9.5: An illustration of pure pursuit algorithm.

between the current orientation and that to point A. For a small difference, we have

θ ≈ sin θ = x
da

. Hence, the curvature can be re-formulated as γ = 2θ
da

.

9.3.3 Effectiveness Analysis of the Proposed Approach

In this subsection, we give theoretical analysis of effectiveness of the proposed hybrid

approach. Some notations are used in our analysis. For a robot ri, its predicted uniform

motion time is denoted as pti to move to the end of its current state with the current

speed, and the real time to the end of its current state is rti. The optimal value of (9.7a)

of ri at the current position is obji = obji(1) + obji(2), where obji(1) and obji(2) are

the values of the first and second terms in (9.7a), respectively.

Lemma 8. If ri can fire its current transition, then pti ≥ rti.

Proof. If ri can fire its current transition, then the time constraint (9.7f) does not need to

be considered. In this situation, decelerated motion is not an optimal solution. Indeed,

let obj1
i and obj2

i be the values under constant motion and under decelerated motion

with respect to the current speed, respectively. First, it is clear that obj1
i (1) = 0, while

obj2
i (1) > 0. Second, the motion time to a same position under a decelerated motion

is larger than that under a constant motion, which means obj1
i (2) < obj2

i (2). Thus,

obj1
i < obj2

i . This means that in this situation, ri should move with its current speed or

an accelerated speed. Hence, pti ≥ rti.

Based on the proof of Lemma 8, we can obtain the following lemma.

Chapter 9. Hybrid Approach to Distributed Motion Control 169

Lemma 9. If a robot can move at its current speed v0, its optimal motion is either con-

stant motion or accelerated motion with respect to v0.

Lemma 10. The motion under the solution of problem (9.7) can guarantee collision and

deadlock avoidance.

Proof. Suppose ri0 at its current state s cannot transit to the next state, and the sequence

of its enable-dependent robots is Di(s) = {ri1 , ri2 , . . . , rij}, where rik needs to wait for

the move of rik+1
for k = 1, 2, . . . , j − 1, and rij can fire its current transition. The real

motion time for rik to the required position is denoted as rtik . Based on Lemma 8, we

have ptij ≥ rtij . If ptij−1
≥ ptij , rij−1

can move at least with its current speed based on

the proof of Lemma 9. Thus, we have ptij−1
≥ rtij−1

. Based on (9.7f), rtij−1
≥ ptij .

Hence, ptij−1
≥ rtij−1

≥ ptij ≥ rtij If ptij−1
< ptij , rij−1

needs to decelerate its

motion based on its own optimal problem (9.7). In this case, rij−1
’s optimal solution

should reach the boundary of its own constraint (9.7f). This means rtij−1
= ptij > rtij .

Hence, the real motion time of rij−1
satisfies max{ptij−1

, ptij} ≥ rtij−1
≥ rtij .

Suppose, rik+1
satisfies max{ptik+1

, . . . , ptij} ≥ rtik+1
≥ . . . ≥ rtij . Let us consid-

er rik . If ptik ≥ max{ptik+1
, . . . , ptij}, rik at least can move at its current speed based on

its own (9.7). Thus, we have ptik ≥ rtik ≥ max{ptik+1
, . . . , ptij} ≥ rtik+1

. Note that in

this case ptik = max{ptik , ptik+1
, . . . , ptij}. If ptik < max{ptik+1

, . . . , ptij}, rik needs

to decelerate its motion. In this case, rik’s optimal solution should reach the boundary

of its own constraint (9.7f). This means rtij−1
= max{ptik+1

, . . . , ptij} > rtik+1
. In

conclusion, we have max{ptik , ptik+1
, . . . , ptij} ≥ rtik ≥ . . . ≥ rtik+1

≥ . . . ≥ rtij .

Based on the method of induction, we have that rti0 ≥ rtik ≥ . . . ≥ rtik+1
≥ . . . ≥

rtij . This means that when ri0 arrives at the end of its current state, its enable-dependent

robots have left their required positions. Hence, ri0 can transit to its next state without

any collisions and deadlocks.

Lemma 11. Algorithm 13 can always return a sub-optimal, if not optimal, solution of

problem (9.7).

Proof. Based on our discretization, each robot is able to stop its motion from Lk0 to

LK . Thus, when (P (mbi)) fails to find an optimal solution, Lines 11−13 in Algorithm

Chapter 9. Hybrid Approach to Distributed Motion Control 170

13 guarantees to compute a feasible solution of (9.7). Otherwise, the optimal solution

of (P (mbi)) at mbi is a sub-optimal, if not optimal, solution of (9.7). Indeed, for a

convex function f(x), given an arbitrary point x0 ∈ D, we have ∀x ∈ D, f(x) ≥
f(x0) +∇f(x0)T (x − x0). Since g(bi) =

∑K−1
k=k0

2h√
bk+1
i +
√
bki

is a convex function, we

have g(bi) ≥ g(mbi) + ∇g(mbi)T (bi − mbi). Hence, tw − g(bi) ≤ tw − [g(mbi) +

∇g(mbi)T (bi − mbi)]. Compared with (P (mbi)) and (9.7), the optimal solution of

(P (mbi)) is a feasible solution of (9.7). The sub-optimal can be derived directly from

the local convergence of SCP [205].

Theorem 11. Under Algorithm 14, each robot can move under a sub-optimal, if not

optimal, motion without causing collisions and deadlocks.

Proof. This theorem can be easily proved based on Lemmas 10 and 11 since Lemma 10

guarantees collision and deadlock avoidance at each time instant of the MPC procedure

and Lemma 11 guarantees a sub-optimal, if not optimal, motion.

9.4 Modeling of Communication Protocols in the Pro-

posed Approach

As described in our approach, there does not exist a centralized controller for the sys-

tem since each robot makes decision and moves independently by building and solving

its own local optimization problem. To build its local optimization problem, each indi-

vidual needs a sequence of communication with its neighbors in both discrete transition

control and continuous speed adjustment. In this section, we discuss the communication

protocols in our approach using Petri nets. A Petri net is a tuple 〈PP , TP , AP 〉, where

PP is a set of places, TP is a set of transitions, and AP ⊂ ((PP × TP) ∪ (TP × PP)) is

a set of arcs.

Before giving the detailed Petri net models, we summarize the messages used in the

protocols.

Chapter 9. Hybrid Approach to Distributed Motion Control 171

TABLE 9.1: Messages for Communication Among Robots

Class Formula Meaning of Message Content

msg1 〈snd, rec, (r, s)〉 Robot r activates the communication procedure
for Dect(r, s).

msg2 〈snd, rec, (r, idle)〉 Notification to r that the detection of a robot
whose succeeding state is idle but is not s.

msg3 〈snd, r, (snd, s)〉 snd asserts the detection of s.

msg4 〈snd, rec, (s)〉 rec should move away from s before snd arrives
at s.

msg5 〈snd, rec, (Info)〉
Info = {(rj, v, L)}, where rj is a waiting-for
robot, v is its current speed, and L is the path
required motion length.

Definition 38. A message transmitted between two robots is a tuple 〈snd, rec, (c)〉,
where snd is the robot sending the message, rec is the one receiving the message, and

(c) is the content of the message.

In our approach, there are two communication protocols: one is for deadlock detec-

tion and the other is to retrieve the waiting-for robots. A waiting-for robot is a robot that

another one needs to wait for. Based on the content of messages, messages transmitted

among robots are divided into five classes, whose details are described in Table 9.1.

The first three are for deadlock detection and the last two are for retrieval of waiting-for

robots. In the sequel, taking ri as an example, we describe the protocols in details.

First, consider the communication protocol for ri’s deadlock detection Dect(ri, s).

Fig. 9.6 shows the Petri net model of an intermediate robot involved in Dect(ri, s).

In this model, B1
1 and B1

2 are communication buffers for msg1 in the communication

network, B2
1 and B2

2 for msg2, and B3
1 for msg3. P1: prepare for communication; T1:

receive a msg1 message whose content is (ri, s) and check the status of the succeeding

state; P2: the status of the checked state; c1 − c3: three conditions specifying the status

stored in P2, where c1 is “the checked state is not occupied by any robot and does not

match s”, c2 is “the checked state is occupied by another robot”, and c3 is “the checked

state is s”. T2: send a msg3 message to assert the detection of s; T3: publish a msg2

message to confirm the idleness of its succeeding state; T4: publish a msg1 message to

the robot at its succeeding state; T5: publish the received msg2 message.

Chapter 9. Hybrid Approach to Distributed Motion Control 172

P

P

T

T T

T

T

B

B

BB

B

FIG. 9.6: Communication model of an intermediate robot involved in Dect(ri, s).

P

P
B

B

T

T

T

P

P

B

B

T

T

T

jP

jP

B

B

jT

jT

jT

jP

jT

jP

jT jT

jB

jB

ri ri
ri ri j rij
P

T

T

T

nT

dT
P

P

P

P

B

nT

FIG. 9.7: Communication protocol for the deadlock detection procedure Dect(ri, s).

Take rik as an example to explain the evolution of the net. When rik receives a

msg1 message from B1
1 , say 〈ri(k−1), rik, (ri, s)〉, T1 is enabled and fires to check the

succeeding state. If c1 satisfies, T3 fires and a msg2 message 〈rik, ri(k−1), (ri, idle)〉 is

published to buffer B2
1 . If c3 satisfies, T2 fires and a msg3 message 〈rik, ri, (rik, s)〉 is

published to buffer B3
1 . If c2 satisfies and the checked state is occupied by ri(k+1), then

T4 fires and a msg1 message 〈rik, ri(k+1), (ri, s)〉 is published to buffer B1
2 . Note that

after firing each of T2 − T4, rik also stores ri(k−1) to P1 for a given duration. When it

receives a msg2 message 〈ri(k+1), rik, (ri, idle)〉 from B2
2 , T5 fires and publishes a msg2

message 〈rik, ri(k−1), (ri, idle)〉 to B2
1 by checking the stored information ri(k−1).

Fig. 9.7 shows the first communication protocol of ri for the procedure Dect(ri, s).

Explanations of some places and transitions are given as follows. P1: initialize

Dect(ri, s); T1: check the status of Posi(s); c0: Posi(s) is a private state or is idle;

Tn,1 and Tn,2: confirm no deadlocks; T2: publish a msg1 message to the next robot; Td:

confirm a deadlock with the received response; P3: wait for response; P4: no deadlocks;

Chapter 9. Hybrid Approach to Distributed Motion Control 173

P5: initialize the communication process for retrieval of waiting-for robots; and T3: fin-

ish the communication for deadlock detection. For an internal robot, i.e., ri1, . . . , ri(j−1),

only c2 is satisfied and its T4 fires; while the terminal robot rij can satisfy either c1 or

c3, resulting in the firing of T j2 or T j3 , respectively.

If ri needs to do deadlock detection, T1 fires to check Posi(s), whose status is either

idle or occupied by another robot. If Posi(s) is idle, then confirmation of no deadlocks

is generated by firing Tn,1. However, if ri detects that Posi(s) is occupied by another

robot, say ri1, ri sends a message 〈ri, ri1, (ri, s)〉 to ri1 by firing T2. When ri1 receives

this message, it checks its succeeding state (firing T 1
1) and detects ri2, then a msg1

message 〈ri1, ri2, (ri, s)〉 is sent to ri2 (firing T 1
4). With the model described in Fig.

9.7, the content (ri, s) is transmitted one by one among the internal robots until there

exists a robot rij which checks its succeeding state satisfying c1 or c3. If c3 is satisfied,

i.e., the succeeding state is s, then a msg3 message 〈rij, ri, (rij, s)〉 is sent to ri directly

since their distance cannot be very large. After receiving this message, Td fires and ri is

initializing the communication for waiting-for robot retrieval. If c1 is satisfied, i.e., the

succeeding state is idle and is not s, a msg2 message is first transmitted to ri(j−1), then

one by one to ri2 and ri1. At last, ri receives this message content from ri1 and asserts

that no deadlocks are detected by firing Tn,2. Since we cannot guarantee that rij is still

in the communication range of ri for this situation, and we can only guarantee that it is

in the communication range of ri(j−1). Thus, the msg2 message is transmitted to ri via

a sequence of internal robots.

Second, consider the communication protocol for the retrieval of waiting-for robots.

Note that the process is that: when ri detects a collision or deadlock if it was at a state

s, ri should wait for a robot, say rj , to move away from s first. Thus, rj should check

whether it can move to its succeeding state Posj(s). If rj also needs to wait for a robot

rj1 , then rj1 checks whether it can move to a required state. Continue the process until

a robot can move to a given state. Fig. 9.8 describes the communication model of

robots, e.g., rj and rj1 , involved in ri’s retrieval of waiting-for robots. In the model, B4
1

and B4
2 are buffers for msg4 message, and B5

1 and B5
2 are buffers for msg5 message.

Suppose the received message from B4
1 is 〈ri, rj, (s)〉. T1: check the status of Posj(s);

c4: the checked state is idle; c5: the checked state is occupied by another robot; T2: start

Chapter 9. Hybrid Approach to Distributed Motion Control 174

B

B

B

B

P

P

P

P P

P

T

T T

T

T

T

n
T d

T

FIG. 9.8: Communication model of an intermediate robot involved in ri’s procedure
to retrieve its waiting-for robots.

deadlock detection Dect(rj, Posj(s)); P3: initialize Dect(rj, Posj(s)); Tn: confirm no

deadlocks; T4: send to B5
1 its current speed and the path length required to move; Td:

confirm a deadlock; T3: publish a msg4 message to B4
2 in order to avoid collisions;

T5: publish a msg4 message to B4
2 to inform the terminal robot of Dect(rj, Posj(s))

to move away from Posj(s); P6: wait for the response from its waiting-for robot; T6:

update the content of received msg5 message from B5
2 and publish to the buffer B5

1 .

Detailedly, when it receives 〈ri, rj, (s)〉 from buffer B4
1 , rj needs to check whether

it can move to Posj(s). So rj checks the status of Posj(s) by firing T1. If Posj(s)

is occupied by a robot, say rk, then c5 is satisfied. Hence, T3 fires and publishes a

msg4 message 〈rj, rk, (Posj(s))〉 to B4
2 , and rj is waiting for the response from rk.

Otherwise, c4 is satisfied and T2 fires to start Dect(rj, Posj(s)). The shaded part is the

procedure to detect deadlock described in Fig. 9.7. It results in either no deadlocks,

i.e., Tn can fire, or a deadlock with terminal robot, say rk, i.e., Td fires. In the former

Chapter 9. Hybrid Approach to Distributed Motion Control 175

P

P

P

B

B

jP

jP

jP

jP

jP

B

B

jT

jT

jT

jT

jT

jP

jP

j mP

j mP

ri rij rj rj m-

rjm
jP

jT

jT

jT

jT

jP

jT

B

B

j mP

j mT

j mP
jP

j mT

j mT

j mT

j mT

j mP

jmP

jmT

jmP

jmT

jmP

jmP

j m

dT

jmT

jm

nT

j

dT

T

T

j

dT

mB

mB

FIG. 9.9: Communication protocol of ri for its procedure to retrieve waiting-for robots.

case, rj fires T4 and publishes a msg5 message 〈rj, ri, Info〉 to B5
2 , where Info =

{(rj, vj, Lj)} and Lj is the path length from rj’s current position to the end of s. In

the latter case, T5 fires, publishing a msg4 message 〈ri, rk, (Posj(s))〉 to B4
2 , and ri is

waiting for response from rk. When it receives 〈rk, rj, Info〉 from B5
2 , T6 fires and

publishes to B5
1 a new msg5 message 〈rj, ri, Info′〉 whose content is updated with

Info′ = Info ∪ {(rj, vj, Lj)}.

Fig. 9.9 shows the second communication protocol of ri to retrieve its waiting-for

robots when ri detects a collision or deadlock and needs to wait for rij to move away

from s. P1 denotes the initialization of the retrieval communication with the information

(rij, s). Hence, ri starts to retrieve its waiting-for robots by firing T1 and sends a msg4

message 〈ri, rij, (s)〉 to rij . Then, based on the model shown in Fig. 9.8, each internal

robot rk, rk ∈ {rij, rj1, . . . , rj(m−1)}, receives a msg4 message, say 〈rk1 , rk, (sk1)〉,
from rk1 and sends a new msg4 message 〈rk, rk2 , (Posk(sk1))〉 to the next robot rk2 .

The communication returns back by a terminal robot, e.g., rjm, which finds that it can

move to the required state Posjm(sj(m−1)) when it receives 〈rj(m−1), rjm, sj(m−1)〉 from

B4
m−1. Then, T jm4 fires and sends back a msg5 message 〈rjm, rj(m−1), Info〉, where

Info = {(rjm, vjm, Ljm)} and Ljm is the path length from rjm’s current position to the

end of sj(m−1). The content of this kind of message is updated by the internal robots

one by one. Finally, ri receives the msg5 message, retrieves its waiting-for robots as

well as related information, and completes the communication by firing T2.

Chapter 9. Hybrid Approach to Distributed Motion Control 176

P

T

P

T

T
T

T

T

T

T

P

P

P

P

B

B

B

B

B

T

ri

T

P

FIG. 9.10: Communication architecture of robot ri.

Based on the protocols described in Figs. 9.7 and 9.9, we can obtain the complete

communication architecture for ri, which is shown in Fig. 9.10. Suppose ri’s current

state is scur,i. Let s = Posi(scur,i), and ss = Posi(s). Note that the communication

can be launched only when s is a collision state. Thus, in Fig. 9.10, P0: prepare

for communication; c6: s is occupied by another robot; c7: s is idle; T1: launch the

communication for retrieval of waiting-for robots; T2: launch the process Dect(ri, s);

T10: finish the communication process and return the communication result; and others

have the same meanings as those in Figs. 9.7 and 9.9. If s is occupied by another

robot, i.e., c6 is satisfied, this means that a collision is detected. So T1 is fired and

ri is at P5: initialization of the second kind of communication, i.e., communication

process for retrieval of waiting-for robots. If s is idle, i.e., c7 is satisfied, this means

that ri should perform deadlock detection. So T2 is fired, and ri reaches the status of

initialization of the communication for deadlock detection, i.e., P1. Hence, ri launches

the communication for deadlock detection and then that for waiting-for robot retrieval.

Chapter 9. Hybrid Approach to Distributed Motion Control 177

Based on the above protocols, a robot can communicate with its neighbors, deter-

mine whether its motion will cause collisions or deadlocks, and finally compute its

minimal motion time at the current state, based on which it can compute its speed inde-

pendently. In this way, the motion controller of each robot can control its motion in a

distributed manner. Thus, we have the following proposition.

Proposition 8. The multi-robot system under the proposed control approach is a dis-

tributed control system.

9.5 Simulation Cases

In this section, we give some simulations to show the effectiveness of our approach.

Our experiments are done via MATLAB. The toolbox CVX [199] with MOSEK solver

is applied to implement SCPs.

9.5.1 Simulation Results under the Proposed Hybrid Approach

First, suppose there are four autonomous vehicles, r1, r2, r3 and r4, moving through a

cross shown in Fig. 9.11(a), where the position of a vehicle is described as its center

of mass. The distance from their current positions to the cross boundaries a, g, d, and

j are equal to 3ρ, and the length of each segment between any two successive points is

equal to 4ρ, where ρ = 100 units. The corresponding transition system of each robot

is shown in Fig. 9.11(b). Detailedly, the segments from their current positions to a, g,

d, and j are abstracted to private states s5, s6, s7, and s8, respectively; segments ab and

mk, are abstracted to a collision state s1, bc and gh as s2, hi and de as s3, and ef and

jk as s4.

The parameters of robots are as follows: speed constraint of each robot is v ∈
[0, 100], acceleration constraint is a ∈ [−150, 150], the step length of each robot is set

as h = 100/3, and the numbers of steps of at each private and collision states are 9 and

12, respectively.

Chapter 9. Hybrid Approach to Distributed Motion Control 178

(a) Path network.

s1

s2 s3

s4

s5

À

À

Á

Â

Ã

1

2

3

4

Á

Â

Ã

s6

s7

s8

(b) Transition system.

FIG. 9.11: Paths of four robots and the corresponding transition system.

In the simulation, we assume r1, r2, r3, and r4 arrive at the starts of s5, s6, s7, and s8

with speed 60, 50, 40, and 30, respectively. The evolutions of acceleration, speed and

distance during the simulation are shown in Figs. 9.12, 9.13, and 9.14. Since they are

moving to a collision region X = {s1, s2, s3, s4}, these robots need negotiation. Based

on Algorithm 10, r1, r2, and r3 can fire their current transitions, while r4 needs to wait

for r3 to move away from s4. Thus, at the beginning, r4 has negative acceleration (the

dotted line in Fig. 9.12) to slow down its speed (the dotted line in Fig. 9.13), while

others keep their current speeds.

At time instant t1, r1 transits to s1. Then the negotiation process determines that r1

needs to wait for r2 to move away from s2 and r4 still needs to wait for r3. Thus, r1

slows down its motion. This can be seen from both its acceleration in Fig. 9.12 and

speed in Fig. 9.13 (the dash-dot lines). At time instant t2, r2 arrives at s2. Since r3

will transit to s3 earlier than r2, r2 needs to wait for r3. Thus, r2 also decreases its

speed. At time instant t3, as shown in Fig. 9.14, r1, r2, and r3 arrive at the end of s1,

s2, and s3 at the same time. Thus, when r3 transits to s4, r2 transits to s3 and r1 to

s2. At this time, based on the optimal objective, r2 keeps a constant speed and r1 first

accelerates its motion and then keeps a constant speed. Note that r4 still decelerates

its motion in order to avoid collision with r3. At time instant t4, r3 leaves away from

Chapter 9. Hybrid Approach to Distributed Motion Control 179

0 10 20 30 40 50 60 70 80 90
Time

-6

-5

-4

-3

-2

-1

0

1

2

A
cc

el
er

at
io

n

r
1

r
2

r
3

r
4

t
1

t
2

t
3 t

4

FIG. 9.12: Acceleration of the four robots in the simulation.

s4 and r4 transits to s4. Since it does not need to wait for any robots, after t4, r4 first

accelerates its motion and then keeps a constant speed. The simulation video can be

found at https://youtu.be/C21fDFU4Nyo.

From the change of acceleration shown in Fig. 9.12 and speed in Fig. 9.13, we can

conclude that during the motion along the cross, each robot adjusts its speed to avoid

collisions and deadlocks, as well as keeps its motion as smoothly as possible.

9.5.2 Comparison of Our Approach with Discrete Control

In this subsection, we compare the motion under our hybrid control and that under only

discrete control. Since there is no speed controller considered in discrete control, a

natural way to drive a robot is that it first moves in a constant speed; if it finds that

it cannot transit to the next state, the robot will decelerate its motion with the largest

deceleration near the end of the current state so that it can stop its motion at the end;

when it can move forward again, the robot accelerates to its previous speed. Besides,

the first robot reaching a state can transit to this state first as long as the transition cannot

https://youtu.be/C21fDFU4Nyo

Chapter 9. Hybrid Approach to Distributed Motion Control 180

0 10 20 30 40 50 60 70 80 90
Time

0

10

20

30

40

50

60

70

Sp
ee

d

r
1

r
2

r
3

r
4

t
4

t
3

t
1

t
2

r
3

r
2

r
1

r
4

FIG. 9.13: Speed of the four robots in the simulation.

0 10 20 30 40 50 60 70 80 90
Time

0

100

200

300

400

500

600

700

800

900

1000

1100

D
is

ta
nc

e

r
1

r
2

r
3

r
4

t
4

t
3

t
2

t
1

FIG. 9.14: Distances of the four robots in the simulation.

Chapter 9. Hybrid Approach to Distributed Motion Control 181

1 5 10.1 11.87 14.17 17.5 20 25 27.5 30 35 40 45 50 55
0

10

20

30

40

50

60

Sp
ee

d

 r
1

 r
2

r
3

 r
4

1 5 10.1 11.87 14.17 17.5 20 25 27.5 30 35 40 45 50 55
pvt

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

St
at

e

r
1

r
2

r
3

 r
4

Time

r
4

r
1

r
2 r

3

t
5

Time

(b)

r
1r

2

r
3

r
4

(a)t
1

t
2

t
3

t
4

FIG. 9.15: Simulation results with only discrete control.

cause any collision and deadlock. Based on this idea, we can give the simulation results

of the system described in Fig. 9.11 under discrete control.

Fig. 9.15 shows the state transition and speed of the four robots under discrete

control, where pvt means a private state of a robot. As shown in Fig. 9.15(a), before

r4 reaches the end of s8, r1, r2, and r3 are at s1, s2, and s3, respectively. To avoid a

deadlock, r4 stops its motion with the maximal deceleration such that it can stop at the

end of s8. Hence, as shown in Fig. 9.15(b), r4 stops its motion at time instant t1, while

r1, r2, and r3 are still at s1, s2, and s3, respectively. Near the time instant t2, r1 predicts

that when it arrives at the end of s1, r2 is still at s2. Thus, r1 stops its motion at time

instant t2, when r1 reaches the end of s1, as shown in Fig. 9.15(b). Similarly, before

reaching the end of s2, r2 predicts that r3 is still at s3. So r2 stops its motion at the end

of s2 with its maximal deceleration at time instant t3. At time instant t4, r3 transits to

s4, so r2 can move forward and then r1 moves forward, but r4 should still stop at s8.

Hence, r1 and r2 resume their motion with their maximal acceleration to their former

speed and then move with constant speed. At t5, r3 moves away from s4, so r4 resumes

its motion with its maximal acceleration and then keeps a constant speed.

Comparing the speeds in Fig. 9.13 and Fig. 9.15(b), we can find that: (1) there

are much less stops under the proposed hybrid approach than pure discrete control; (2)

whenever a robot needs acceleration or deceleration, there is no sharp change of the

Chapter 9. Hybrid Approach to Distributed Motion Control 182

1

2

4

3
56

7 8

À

Á

Â

Ã

Ä

Æ

Å

Ç

À
Á

ÂÃ

Ã
Ä

Æ

Å
Ç

s01

s02

s03

s04

s06

s07

s08

s1

s2

s3

s4

s5

s6

s7

s8

s9

FIG. 9.16: A more complex simulation example.

speed under hybrid approach. Hence, the proposed approach can guarantee smooth

motion of robots. Indeed, when a robot detects a deadlock if it arrives at its next state,

the robot is required to stay at its current state for a proper time duration in order to

avoid the detected deadlock. In the pure discrete method, each robot keeps a constant

speed during the motion at the state, which may lead to a shorter motion time at this

state than the required time, and thus it must decelerate immediately to stop at the end

of the related segment. While in our proposed method, with the continuous control part,

a robot adjusts its speed based on the waiting time such that the robot can reach the end

of the current segment with an intelligently-tuned smooth speed change. In this way,

our approach leads to the advantages of fewer stops and fewer sharp-speed changes.

9.5.3 A More Complex Scenario

To further show the effectiveness of our approach, we study a more complex transition

system, which is shown in Fig. 9.16, where the states with numbers denote the current

states of the corresponding robots. The parameters of the robots are the same with

those of the system studied in Section 9.5.1, but with different speeds. Suppose the

eight robots, r1, . . . , r8, arrive at the starts of their current states with speeds 35, 65, 55,

45, 30, 60, 50, 40, respectively.

The task of the robots in this experiment is to pass through the collision region

X = {s1, s2, . . . , s9}. The evolutions of their speed and state transition during the

simulation are shown in Figs. 9.17 and 9.18. The vertical lines denote the time instants

Chapter 9. Hybrid Approach to Distributed Motion Control 183

0 10 20 30 40 50 60 70 80 90
Time

0

10

20

30

40

50

60

70

Sp
ee

d

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
2

r
6

r
3

r
7

r
4

r
8

r
1

r
5

t

FIG. 9.17: Speed evolution of the robots.

when some robots fire their transitions. First, r1 needs to wait for r4 and r6 needs to

wait for r8 during the negotiation process. So the two robots decrease their speed, as

shown in Fig. 9.17. As shown in Fig. 9.18, r2 transits to s2 at the time instant denoted

by the first vertical line. At this instant, r2 should decelerate its motion based on the

negotiation since r3 will arrive at s3 earlier. Similarly, when r6 moves to s7, it should

decrease its speed since another robot, r7, will arrive at s8 earlier than r6. So do r3,

r7, and r4. Note that, as shown in Fig. 9.18, at time instant t, r4 transits to s5 and r8

moves to its own private state. So r1 and r5 transit to s1 and s6, respectively. Thus,

the current configuration of the system is (s1, s3, s4, s5, s6, s8, s9, pvt). Clearly, at this

configuration, each robot can move without any waiting. Since the speed of r1 and r5

are 0, and their parameters are the same, their optimal solutions are the same. Hence,

as shown in Fig. 9.17, their speeds are the same along with time.

9.6 Conclusion

In this chapter, we study a distributed and hybrid approach to motion control of a multi-

robot system where each robot has a predefined path. Our approach contains two phases.

Chapter 9. Hybrid Approach to Distributed Motion Control 184

0 10 20 30 40 50 60 70 80 90
Time

pvt

s
01

s
02

s
03

s
04

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
06

s
07

s
08

pvt

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
1

r
8

r
7

r
6

r
5

r
2

r
3

r
4

t

FIG. 9.18: State transitions of the robots.

At the first phase, an online discrete control policy is proposed to determine whether a

robot can transit to the next state in order to avoid collisions and deadlocks. Based

on the discrete determination, at the second phase, an MPC-based continuous control

strategy is proposed to compute the optimal speed of a robot such that it can obey the

given decision. Each optimization problem constructed at this phase only contains a

robot’s physical constraints and one time related constraint. This reduces the scale of

the optimization problem greatly.

Chapter 10

Conclusion and Future Research

In this chapter, we first give a summary of the work conducted in this thesis and then

discuss some future research directions based on our current results.

10.1 Summary

Motion control for multi-robot systems is one of the most important issues. On one

hand, as an individual, each robot needs to avoid collisions and deadlocks with others;

on the other hand, as a whole system, all robots in a system need to cooperate with

others during their motion. To leverage the advantages of multi-robot systems, in this

thesis, we concentrate on distributed approaches to motion control of robots in multi-

robot systems, which not only guarantee good flexibility of the systems but also enhance

communication among robots.

First, we study a fully distributed and real-time trajectory planning method. This

approach applies MPC to realize time receding so as to update environment parameter-

s and communication connection, and iSCP to resolve each robot’s local optimization

problem on each horizon. In our approach, a robot only needs to (1) detect environ-

mental obstacles in the current sensing range and (2) communicate with robots within

its communication range to retrieve their current positions and velocities, which can be

obtained immediately. By predicting its neighbors’ motion as uniform attributes based

185

Chapter 10. Conclusion and Future Work 186

on the retrieved information, a robot can finally build its optimization problem to avoid

collisions and compute its motion input, i.e., acceleration, to its actuator.

Second, when the paths are recorded from the above work, the future robots may

be required to move along these paths in some scenarios. Or a robot has to move a-

long a predefined path due to some infrastructure limitations. In such systems, since

the paths of robots are determined, robots may cause not only collisions but also dead-

locks. Hence, in the sequel, we propose a distributed approach to avoiding collisions

and deadlocks in multi-robot systems with predefined path networks. We first model

the motion of robots in such a system by LTS models. Based on its LTS model, a robot

checks its succeeding state to determine whether there exists a collision. To avoid dead-

locks, a robot needs to check its next two states and communicate with other robots via

a multi-hop communication path to detect deadlocks. Only if its current move transition

does not cause any collisions or deadlocks can a robot move one step forward.

Third, for some complex path networks, avoiding a deadlock may cause other cir-

cular waits, which also make robots stop their motion. Recursively, even though no

deadlocks may occur after the firing of its current transition, a robot also cannot move

forward. Hence, we further study the avoidance of higher-order deadlocks, which are

deadlock-free configurations currently but under which deadlocks will occur inevitably.

We investigate the structural properties of higher-order deadlocks and propose a dis-

tributed approach to avoiding higher-order deadlocks. A system with N robots can at

most form a higher-order deadlock of order N − 3, meaning that a deadlock will occur

within N − 3 steps. Hence, each time a robot only needs to check at most N − 1 s-

tates. To detect a higher-order deadlock, a robot should communicate with other robots

via a multi-hop communication path to determine whether there exists any circuit and

whether a circuit may be a higher-order deadlock.

Fourth, we study motion control for systems containing reliable and unreliable

robots. We study robust control in such systems, whose target is to minimize the effect

of failed robots on a system. We focus on systems with fixed paths since for the systems

which can change paths, robust control can be achieved by regarding the failed robots as

obstacles. Based on the LTS models, we propose a distributed approach, which contains

two kinds of local algorithms: one for reliable robots and the other for unreliable ones.

Chapter 10. Conclusion and Future Work 187

It mandates that the failure of a robot can only affect the motion of robots that collide

directly with the failed ones.

At last, we study a distributed, hybrid, and real-time motion control method of a

system with fixed paths. It combines both continuous and discrete technologies studied

before. Based on MPC strategy, on each horizon, with discrete control, a robot can

determine the robots it needs to wait for in order to avoid collisions and deadlocks;

then it predicts the least motion time it should spend in its current state; based on this

information, the robot can build its local optimization problem and solve it using SCP;

finally, the first acceleration is applied to control the robot, and the process is repeated

on the next horizon. The communication protocols are also implemented via Petri nets.

With the proposed hybrid approach, a robot not only can avoid collisions and deadlocks

efficiently, but also can obtain the low-level continuous inputs to its actuator.

10.2 Future Work

This thesis proposes some distributed algorithms for motion control in multi-robot sys-

tems. In the future, there are some interesting research directions that can be further

investigated.

1. Implementation of the Developed Algorithms on Real Robots. This thesis focus-

es on the design of novel motion planning and control algorithms and their theoretical

analysis. Hence, simulation results are enough to show their effectiveness and effi-

ciency. In the future, we will implement the developed algorithms on our real robot

platforms, i.e., Asctec Hummingbird UAVs, Asctec Pelican UAVs, and Toyota COMS

AV, and demonstrate the performance in real world environments, which increase the

potential impact of the work.

2. Motion Control in Complex Scenarios. Currently, we only focus on the require-

ment that each robot can move to its given target position. In the future, we will further

consider more complicated tasks. For example, the robots in a system should not only

arrive at their target positions successfully but also maintain some specific formations

Chapter 10. Conclusion and Future Work 188

as accurately as possible during their motion; some robots have predetermined prior-

ities to pass through some areas due to different importance of their assigned tasks.

Another topic can be on more complex paths for each robot. For example, a robot

may have multiple paths to move along, or a path may also contain multiple robots; in

these scenarios, collisions and deadlocks are more sophisticated, and we should deter-

mine whether there exist any higher-order deadlocks, and investigate their properties

and avoidance if higher-order deadlocks do exist.

3. Performance Optimization in Controlled Systems. On the basis that each robot

can complete its tasks, we would further optimize the performance of the controlled

multi-robot systems. First, rather than consider only one objective, we may further con-

sider multi-objective optimization, such as minimizing the total motion time and the

energy cost, and maximizing the motion stability. Game theory [206, 207] then may

be a powerful tool to deal with motion planning with multiple objectives in multi-robot

systems. Second, we may refine the discrete model of robot motion to allow more ad-

missible behavior. For example, as shown in Fig. 5.2, the collision pair (ùagbhc,údgehf)

can be divided into two pairs (öagb,÷dge) and (öbhc,÷ehf), either of which is abstracted as

a collision state; in this way, there may exist two states connected with multiple arcs.

Third, instead of deterministic models, we can apply probabilistic models to describe

robot failures and study the related distributed robust control algorithms; we may also

study how to evaluate failures and reliability of robots [208, 209]. At last, for distribut-

ed approaches, we can also study optimization of the negotiation process among robots.

Some game theoretic approaches [210–212] can be used as reference.

4. Resilience to Attacks via Logic Control. Besides the topic of motion planning and

control, with the development of technologies in robotics, security problems become

more and more important for robots. On one hand, a robot needs some mitigation

measures to protect itself from failures and attacks. For example, self-adaptive systems

[213, 214] are well-designed technologies for robots to change their behavior when

facing failures or attacks. On the other hand, since the fundamental behavior of a robot

is to move from one position to another physically, monitoring and mitigating attacks

from motion control logics, i.e., designing motion control algorithms resilient against

attacks, is also an important and attractive topic. Besides, if a robot is finally attacked,

Chapter 10. Conclusion and Future Work 189

it may become an adversary in a multi-robot system, and thus we should study motion

control in a multi-robot system with adverse robots.

5. Machine Learning in Robot Motion Control. Last but not the least, we will apply

machine learning technologies, such as deep reinforcement learning, to aid the above

research topics, from motion control to attack resilience. First of all, we will collect a

large amount of data by running extensive real-world experiments, so that we can train

high-quality machine learning models, which can be used to aid motion control, defend

against adversaries, etc. Second, we can study how machine learning can help facilitate

motion planning and control. For example, unlike uniform motion prediction, we may

use machine learning models, such as deep reinforcement learning [116,117], to predict

the motion of other robots; we may also use these technologies to generate initial values

so as to speed up the convergence of SCP-based procedures; machine learning aided

deadlock detection is also an important topic deserving further exploration. Third, with

little a prioriwork, another interesting topic is machine-learning-based attack detection

and resilience. For example, based on proper machine learning models, we can predict

whether the current motion of a robot or a system is correct.

Appendix A

List of Publications

1. Yuan Zhou, Hesuan Hu, Yang Liu, Shang-Wei Lin, Zuohua Ding. “A real-time

and fully distributed approach to motion planning for multirobot systems,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, Oct. 2017. http:

//ieeexplore.ieee.org/document/8055437/.

2. Yuan Zhou, Hesuan Hu, Yang Liu, and Zuohua Ding. “Collision and deadlock

avoidance in multirobot systems: A distributed approach,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1712–1726, Jul.

2017.

3. Yuan Zhou, Hesuan Hu, Yang Liu, Shang-Wei Lin, and Zuohua Ding. “A dis-

tributed approach to robust control of multi-robot systems,” Automatica, vol. 98,

pp. 1–13, Dec. 2018.

4. Zuohua Ding, Yuan Zhou, Mengchu Zhou. “Modeling self-adaptive software

systems by fuzzy rules and Petri nets,” IEEE Transactions on Fuzzy Systems, vol.

26, no. 2, pp. 967–984, Apr. 2018.

5. Jipeng Wang, Chunrong Pan, Hesuan Hu, Liang Li, and Yuan Zhou, “A cyclic

scheduling approach to single-arm cluster tools with multiple wafer types and

residency time constraints,” IEEE Transactions on Automation Science and En-

gineering, Nov. 2018. https://ieeexplore.ieee.org/abstract/

document/8543218.

190

http://ieeexplore.ieee.org/document/8055437/
http://ieeexplore.ieee.org/document/8055437/
https://ieeexplore.ieee.org/abstract/document/8543218
https://ieeexplore.ieee.org/abstract/document/8543218

Appendix. List of Publications 191

6. Junyao Hou, Hesuan Hu, Yuan Zhou, Yang Liu. “Decentralized supervisory

control of Generalized Mutual Exclusion Constraints in Petri Nets,” 13th IEEE

Conference on Automation Science and Engineering (CASE), Aug. 2017: 358-

363.

7. Nan Du, Hesuan Hu, Yuan Zhou, Yang Liu. “Robust control of automated man-

ufacturing systems with complex structures using Petri Nets,” 13th IEEE Confer-

ence on Automation Science and Engineering (CASE), Aug. 2017: 364-369.

8. Xiaojun Wang, Hesuan Hu, Yuan Zhou, Yang Liu. “A robust control approach to

automated manufacturing systems allowing failures and reworks with Petri nets,”

13th IEEE Conference on Automation Science and Engineering (CASE), Aug.

2017: 370-375.

9. Jipeng Wang, Chunrong Pan, Hesuan Hu, Yuan Zhou. “Scheduling of single-

arm cluster tools with multi-type wafers and shared PMs,” 13th IEEE Conference

on Automation Science and Engineering (CASE), Aug. 2017: 1046-1051.

Bibliography

[1] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks: Monitoring and

sweeping in changing environments,” IEEE Transactions on Robotics, vol. 28,

no. 2, pp. 410–426, Apr. 2012.

[2] V. Kumar, D. Rus, and S. Singh, “Robot and sensor networks for first responder-

s,” IEEE Pervasive Computing, vol. 3, no. 4, pp. 24–33, Oct. 2005.

[3] A. Marino, L. E. Parker, G. Antonelli, and F. Caccavale, “A decentralized archi-

tecture for multi-robot systems based on the null-space-behavioral control with

application to multi-robot border patrolling,” Journal of Intelligent & Robotic

Systems, vol. 71, no. 3-4, pp. 423–444, Sept. 2013.

[4] D. Portugal, G. Cabrita, B. D. Gouveia, D. C. Santos, and J. A. Prado, “An au-

tonomous all terrain robotic system for field demining missions,” Robotics and

Autonomous Systems, vol. 70, no. C, pp. 126–144, Aug. 2015.

[5] T. Breuer, G. R. G. Macedo, R. Hartanto et al., “Johnny: An autonomous ser-

vice robot for domestic environments,” Journal of Intelligent & Robotic Systems,

vol. 66, no. 1-2, pp. 245–272, Apr. 2012.

[6] “World robotics 2018 edition,” https://ifr.org/free-downloads/, accessed: 2018-

10-25.

[7] C. Kitts and M. Egerstedt, “Design, control, and applications of real-world multi-

robot systems [from the guest editors],” IEEE Robotics & Automation Magazine,

vol. 15, no. 1, p. 8, Mar. 2008.

192

https://ifr.org/free-downloads/

Bibliography 193

[8] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: A review

of the state-of-the-art,” in Cooperative Robots and Sensor Networks 2015, A. K-

oubâa and J. R. Martı́nez-de Dios, Eds. Switzerland: Springer, 2015, pp. 31–51.

[9] J. H. Reif, “Complexity of the mover’s problem and generalizations,” in 20th

Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico,

Oct. 1979, pp. 421–427.

[10] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of

motion planning for multiple independent objects; PSPACE-hardness of

the“Warehouseman’s Problem”,” The International Journal of Robotics Re-

search, vol. 3, no. 4, pp. 76–88, Dec. 1984.

[11] J. Reif and M. Sharir, “Motion planning in the presence of moving obstacles,”

Journal of the ACM, vol. 41, no. 4, pp. 764–790, Jul. 1994.

[12] J.-C. Latombe, Robot Motion Planning. New York: Springer Science & Busi-

ness Media, 1991.

[13] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard, L. E. Kavraki,

and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementa-

tion. Boston, MA: MIT Press, 2005.

[14] S. M. LaValle, Planning Algorithms. Cambridge, UK: Cambridge University

Press, 2006.

[15] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-free naviga-

tion of mobile robots in complex cluttered environments: A survey,” Robotica,

vol. 33, no. 3, pp. 463–497, Mar. 2015.

[16] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time motion plan-

ning methods for autonomous on-road driving: State-of-the-art and future re-

search directions,” Transportation Research Part C: Emerging Technologies,

vol. 60, pp. 416–442, Nov. 2015.

Bibliography 194

[17] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion

planning and control techniques for self-driving urban vehicles,” IEEE Transac-

tions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, Mar. 2016.

[18] M. Kloetzer and C. Belta, “Temporal logic planning and control of robotic

swarms by hierarchical abstractions,” IEEE Transactions on Robotics, vol. 23,

no. 2, pp. 320–330, Apr. 2007.

[19] A. M. Ayala, S. B. Andersson, and C. Belta, “Temporal logic motion planning in

unknown environments,” in 2013 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), Tokyo, Japan, Nov. 2013, pp. 5279–5284.

[20] Y. Chen, J. Tůmová, A. Ulusoy, and C. Belta, “Temporal logic robot control

based on automata learning of environmental dynamics,” The International Jour-

nal of Robotics Research, vol. 32, no. 5, pp. 547–565, Apr. 2013.

[21] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion planning

under linear temporal logic specifications in partially known workspaces,” in

2013 IEEE International Conference on Robotics and Automation (ICRA), Karl-

sruhe, Germany, May 2013, pp. 5025–5032.

[22] I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia, “Automated

composition of motion primitives for multi-robot systems from safe LTL speci-

fications,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Chicago, IL, Sept. 2014, pp. 1525–1532.

[23] J. Luo, H. Ni, and M. Zhou, “Control program design for automated guided ve-

hicle systems via Petri nets,” IEEE Transactions on Systems, Man, and Cyber-

netics: Systems, vol. 45, no. 1, pp. 44–55, Jan. 2015.

[24] B. Hoxha and G. E. Fainekos, “Planning in dynamic environments through

temporal logic monitoring,” in AAAI Workshop: Planning for Hybrid Systems,

vol. 16. Phoenix, Arizona: AAAI, Feb 2016, pp. 601–607.

Bibliography 195

[25] J. Tumova and D. V. Dimarogonas, “Multi-agent planning under local LTL spec-

ifications and event-based synchronization,” Automatica, vol. 70, pp. 239–248,

Aug 2016.

[26] Y. Zhou, H. Hu, Y. Liu, and Z. Ding, “Collision and deadlock avoidance in mul-

tirobot systems: A distributed approach,” IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 47, no. 7, pp. 1712–1726, Jul. 2017.

[27] C. Mahulea and M. Kloetzer, “Robot planning based on boolean specifications

using Petri net models,” IEEE Transactions on Automatic Control, vol. 63, no. 7,

pp. 2218–2225, 2018.

[28] M. Jiang, Z. Ding, M. Zhou, and Y. Zhou, “Formal modeling and verification

of secure mobile agent systems,” in 2015 IEEE international Conference on Au-

tomation Science and Engineering (CASE), Gothenburg, Sweden, Aug. 2015, pp.

545–550.

[29] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, MA: MIT

Press, 2008.

[30] Y. Liu, J. Sun, and J. S. Dong, “Developing model checkers using PAT,” in 8th

International symposium on automated technology for verification and Analysis

(ATVA 2010), Singapore, Sept. 2010, pp. 371–377.

[31] ——, “PAT 3: An extensible architecture for building multi-domain model

checkers,” in 2011 IEEE 22nd International Symposium on Software Reliabili-

ty Engineering (ISSRE 2011), Hiroshima, Japan, Nov. 2011, pp. 190–199.

[32] C. Alexopoulos and P. M. Griffin, “Path planning for a mobile robot,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. 22, no. 2, pp. 318–322,

Mar. 1992.

[33] A. Kleiner, D. Sun, and D. Meyer-Delius, “Armo: Adaptive road map optimiza-

tion for large robot teams,” in 2011 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), San Francisco, CA, Sept. 2011, pp. 3276–

3282.

Bibliography 196

[34] J. P. Van Den Berg and M. H. Overmars, “Roadmap-based motion planning in

dynamic environments,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 885–

897, Oct. 2005.

[35] D. Sun, A. Kleiner, and B. Nebel, “Behavior-based multi-robot collision avoid-

ance,” in 2014 IEEE International Conference on Robotics and Automation (I-

CRA), Hong Kong, China, Jun. 2014, pp. 1668–1673.

[36] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-free

paths among polyhedral obstacles,” Communications of the ACM, vol. 22, no. 10,

pp. 560–570, Oct. 1979.

[37] H. Rohnert, “Shortest paths in the plane with convex polygonal obstacles,” Infor-

mation Processing Letters, vol. 23, no. 2, pp. 71–76, Aug. 1986.

[38] H.-P. Huang and S.-Y. Chung, “Dynamic visibility graph for path planning,”

in 2004 IEEE/RSJ International Conference on Intelligent Robots and System-

s(IROS), vol. 3, Sendai, Japan, Sept. 2004, pp. 2813–2818.

[39] A. T. Rashid, A. A. Ali, M. Frasca, and L. Fortuna, “Path planning with obstacle

avoidance based on visibility binary tree algorithm,” Robotics and Autonomous

Systems, vol. 61, no. 12, pp. 1440–1449, Dec. 2013.

[40] C. Ó’Dúnlaing and C. K. Yap, “A “retraction” method for planning the motion of

a disc,” Journal of Algorithms, vol. 6, no. 1, pp. 104–111, Mar. 1985.

[41] P. Bhattacharya and M. L. Gavrilova, “Roadmap-based path planning − Using

the Voronoi diagram for a clearance-based shortest path,” IEEE Robotics & Au-

tomation Magazine, vol. 15, no. 2, Jun. 2008.

[42] S. Kemna, J. G. Rogers, C. Nieto-Granda, S. Young, and G. S. Sukhatme, “Multi-

robot coordination through dynamic Voronoi partitioning for informative adap-

tive sampling in communication-constrained environments,” in 2017 IEEE Inter-

national Conference on Robotics and Automation (ICRA), Singapore, May 2017,

pp. 2124–2130.

Bibliography 197

[43] S. Garrido, L. Moreno, M. Abderrahim, and F. Martin, “Path planning for mobile

robot navigation using Voronoi diagram and fast marching,” in 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Beijing, Chi-

na, Oct. 2006, pp. 2376–2381.

[44] R. Geraerts and M. H. Overmars, “A comparative study of probabilistic roadmap

planners,” in Algorithmic Foundations of Robotics V, J. D. Boissonnat, B. J, G. K,

and H. S, Eds. Springer, 2004, pp. 43–57.

[45] P. Svestka, J. Latombe, and L. Overmars Kavraki, “Probabilistic roadmaps for

path planning in high-dimensional configuration spaces,” IEEE Transactions on

Robotics and Automation, vol. 12, no. 4, pp. 566–580, Aug. 1996.

[46] J. D. Marble and K. E. Bekris, “Asymptotically near-optimal planning with prob-

abilistic roadmap spanners,” IEEE Transactions on Robotics, vol. 29, no. 2, pp.

432–444, Apr. 2013.

[47] T. Ort, L. Paull, and D. Rus, “Autonomous vehicle navigation in rural environ-

ments without detailed prior maps,” in 2018 IEEE International Conference on

Robotics and Automation (ICRA), Brisbane, Australia, May 2018, pp. 2040–

2047.

[48] L. Zhang, Y. J. Kim, and D. Manocha, “A hybrid approach for complete motion

planning,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), San Diego, CA, Oct. 2007, pp. 7–14.

[49] F. Lingelbach, “Path planning using probabilistic cell decomposition,” in 2014

IEEE International Conference on Robotics and Automation (ICRA), vol. 1.

New Orleans, LA, USA, Apr. 2004, pp. 467–472.

[50] M. Kloetzer, C. Mahulea, and R. Gonzalez, “Optimizing cell decomposition path

planning for mobile robots using different metrics,” in 2015 19th International

Conference on System Theory, Control and Computing (ICSTCC), Cheile Gradis-

tei, Romania, Oct. 2015, pp. 565–570.

Bibliography 198

[51] R. Gonzalez, M. Kloetzer, and C. Mahulea, “Comparative study of trajectories

resulted from cell decomposition path planning approaches,” in 2017 21st In-

ternational Conference on System Theory, Control and Computing (ICSTCC),

Sinaia, Romania, Oct 2017, pp. 49–54.

[52] B. Dugarjav, S.-G. Lee, T. B. Quang, K.-W. Gwak, and B. Lee, “Adaptive online

cell decomposition with a laser range finder in unknown non-rectilinear envi-

ronments,” International Journal of Precision Engineering and Manufacturing,

vol. 18, no. 4, pp. 487–495, Apr. 2017.

[53] Y. Guo and L. E. Parker, “A distributed and optimal motion planning approach

for multiple mobile robots,” in 2002 IEEE International Conference on Robotics

and Automation (ICRA), vol. 3, Washington, DC, Aug. 2002, pp. 2612–2619.

[54] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained mobile

robot motion planning in state lattices,” Journal of Field Robotics, vol. 26, no. 3,

pp. 308–333, Mar. 2009.

[55] M. Pivtoraiko and A. Kelly, “Kinodynamic motion planning with state lattice

motion primitives,” in 2011 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), San Francisco, CA, Sept. 2011, pp. 2172–2179.

[56] M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-UAV motion

replanning for exploring unknown environments,” in 2013 IEEE Internation-

al Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May

2013, pp. 2452–2458.

[57] A. Krnjak, I. Draganjac, S. Bogdan, T. Petrović, D. Miklić, and Z. Kovačić,

“Decentralized control of free ranging AGVs in warehouse environments,” in

2015 IEEE International Conference on Robotics and Automation (ICRA), Seat-

tle, WA, May 2015, pp. 2034–2041.

[58] D. S. Yershov and S. M. LaValle, “Simplicial Dijkstra and A* algorithms for

optimal feedback planning,” in 2011 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), San Francisco, CA, USA, Sept. 2011, pp.

3862–3867.

Bibliography 199

[59] L. Janson, B. Ichter, and M. Pavone, “Deterministic sampling-based motion plan-

ning: Optimality, complexity, and performance,” The International Journal of

Robotics Research, vol. 37, no. 1, pp. 46–61, Jan. 2018.

[60] V. Pacelli, O. Arslan, and D. E. Koditschek, “Integration of local geometry and

metric information in sampling-based motion planning,” in 2018 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), Brisbane, Australia, May

2018, pp. 3061–3068.

[61] Y. Ji, Y. Tanaka, Y. Tamura, M. Kimura, A. Umemura, Y. Kaneshima, H. Mu-

rakami, A. Yamashita, and H. Asama, “Adaptive motion planning based on ve-

hicle characteristics and regulations for off-road UGVs,” IEEE Transactions on

Industrial Informatics, vol. 15, no. 1, pp. 599–611, Jan. 2019.

[62] B. Burns and O. Brock, “Sampling-based motion planning with sensing uncer-

tainty,” in 2007 IEEE International Conference on Robotics and Automation (I-

CRA), Roma, Italy, Apr. 2007, pp. 3313–3318.

[63] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A review,”

IEEE Access, vol. 2, pp. 56–77, Feb. 2014.

[64] E. Schmerling, L. Janson, and M. Pavone, “Optimal sampling-based motion plan-

ning under differential constraints: The driftless case,” in 2015 IEEE Internation-

al Conference on Robotics and Automation (ICRA), Seattle, WA, May 2015, pp.

2368–2375.

[65] W. Sun, S. Patil, and R. Alterovitz, “High-frequency replanning under uncer-

tainty using parallel sampling-based motion planning,” IEEE Transactions on

Robotics, vol. 31, no. 1, pp. 104–116, Feb. 2015.

[66] J. Barraquand and J.-C. Latombe, “Robot motion planning: A distributed rep-

resentation approach,” The International Journal of Robotics Research, vol. 10,

no. 6, pp. 628–649, Dec. 1991.

[67] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,”

Iowa State University, Ames, IA, Tech. Rep. TR 98-11, Oct. 1998.

Bibliography 200

[68] O. Arslan, K. Berntorp, and P. Tsiotras, “Sampling-based algorithms for opti-

mal motion planning using closed-loop prediction,” in 2017 IEEE Internation-

al Conference on Robotics and Automation (ICRA), Singapore, May 2017, pp.

4991–4996.

[69] A. Yershova and S. M. LaValle, “Improving motion-planning algorithms by effi-

cient nearest-neighbor searching,” IEEE Transactions on Robotics, vol. 23, no. 1,

pp. 151–157, Feb. 2007.

[70] A. Bircher, K. Alexis, U. Schwesinger, S. Omari, M. Burri, and R. Siegwart,

“An incremental sampling-based approach to inspection planning: the rapidly

exploring random tree of trees,” Robotica, vol. 35, no. 6, pp. 1327–1340, Jun.

2017.

[71] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning,” The International Journal of Robotics Research, vol. 30, no. 7, pp.

846–894, Jun. 2011.

[72] J. Ng and T. Bräunl, “Performance comparison of bug navigation algorithms,”

Journal of Intelligent and Robotic Systems, vol. 50, no. 1, pp. 73–84, Jan. 2007.

[73] V. Pavlov and A. Voronin, “The method of potential functions for coding con-

straints of the external space in an intelligent mobile robot,” Soviet Automatic

Control, vol. 17, no. 6, pp. 45–51, 1984.

[74] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial potential

functions,” IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp.

501–518, Oct. 1992.

[75] P. Vlantis, C. Vrohidis, C. P. Bechlioulis, and K. J. Kyriakopoulos, “Robot navi-

gation in complex workspaces using harmonic maps,” in 2018 IEEE Internation-

al Conference on Robotics and Automation (ICRA), Brisbane, Australia, May

2018, pp. 1726–1731.

[76] S. S. Ge and Y. J. Cui, “Dynamic motion planning for mobile robots using poten-

tial field method,” Autonomous Robots, vol. 13, no. 3, pp. 207–222, Nov. 2002.

Bibliography 201

[77] S. A. Masoud and A. A. Masoud, “Constrained motion control using vector po-

tential fields,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Sys-

tems and Humans, vol. 30, no. 3, pp. 251–272, May 2000.

[78] G. Li, Y. Tamura, A. Yamashita, and H. Asama, “Effective improved artificial

potential field-based regression search method for autonomous mobile robot path

planning,” International Journal of Mechatronics and Automation, vol. 3, no. 3,

pp. 141–170, Jan. 2013.

[79] A. K. Pamosoaji and K.-S. Hong, “A path-planning algorithm using vector po-

tential functions in triangular regions,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 43, no. 4, pp. 832–842, Jul. 2013.

[80] H. G. Tanner and A. Boddu, “Multiagent navigation functions revisited,” IEEE

Transactions on Robotics, vol. 28, no. 6, pp. 1346–1359, Dec. 2012.

[81] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos, and M. M. Zavlanos, “A

feedback stabilization and collision avoidance scheme for multiple independent

non-point agents,” Automatica, vol. 42, no. 2, pp. 229–243, Feb. 2006.

[82] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Stable flocking of mobile agents,

Part I: Fixed topology,” in 2003 IEEE 42nd International Conference on Decision

and Control (CDC), vol. 2, Maui, HI, USA, Dec. 2003, pp. 2010–2015.

[83] J. Ji, A. Khajepour, W. W. Melek, and Y. Huang, “Path planning and tracking

for vehicle collision avoidance based on model predictive control with multicon-

straints,” IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp. 952–

964, Feb. 2017.

[84] W.-B. Xu, X.-B. Chen, J. Zhao, and T.-Y. Huang, “A decentralized method us-

ing artificial moments for multi-robot path-planning,” International Journal of

Advanced Robotic Systems, vol. 10, no. 1, pp. 24:1–24:12, Jan. 2013.

[85] W.-B. Xu, X.-P. Liu, X. Chen, and J. Zhao, “Improved artificial moment method

for decentralized local path planning of multirobots,” IEEE Transactions on Con-

trol Systems Technology, vol. 23, no. 6, pp. 2383–2390, Nov. 2015.

Bibliography 202

[86] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using the

relative velocity paradigm,” in 1993 IEEE International Conference on Robotics

and Automation (ICRA), Atlanta, GA, USA, May 1993, pp. 560–565.

[87] ——, “Motion planning in dynamic environments using velocity obstacles,” The

International Journal of Robotics Research, vol. 17, no. 7, pp. 760–772, Jul.

1998.

[88] D. Wilkie, J. Van Den Berg, and D. Manocha, “Generalized velocity obstacles,”

in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), St. Louis, MO, USA, Oct. 2009, pp. 5573–5578.

[89] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for

real-time multi-agent navigation,” in 2008 IEEE International Conference on

Robotics and Automation (ICRA), Pasadena, CA, May 2008, pp. 1928–1935.

[90] J. Snape, J. Van Den Berg, S. J. Guy, and D. Manocha, “Smooth and collision-

free navigation for multiple robots under differential-drive constraints,” in 2010

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

Taipei, Taiwan, Oct. 2010, pp. 4584–4589.

[91] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body

collision avoidance,” in Robotics Research, C. Pradalier, R. Siegwart, and

G. Hirzinger, Eds. Berlin, Heidelberg: Springer, 2011, pp. 3–19.

[92] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R. Siegwart, “Reciprocal col-

lision avoidance for multiple car-like robots,” in 2012 IEEE International Con-

ference on Robotics and Automation (ICRA), St. Paul, Minnesota, May 2012, pp.

360–366.

[93] J. Van Den Berg, J. Snape, S. J. Guy, and D. Manocha, “Reciprocal colli-

sion avoidance with acceleration-velocity obstacles,” in 2011 IEEE International

Conference on Robotics and Automation (ICRA), Shanghai, China, May 2011,

pp. 3475–3482.

Bibliography 203

[94] D. Bareiss and J. van den Berg, “Generalized reciprocal collision avoidance,” The

International Journal of Robotics Research, vol. 34, no. 12, pp. 1501–1514, Oct.

2015.

[95] J. Alonso-Mora, P. Beardsley, and R. Siegwart, “Cooperative collision avoidance

for nonholonomic robots,” IEEE Transactions on Robotics, vol. 34, no. 2, pp.

404–420, Apr. 2018.

[96] P. Abichandani, G. Ford, H. Y. Benson, and M. Kam, “Mathematical program-

ming for multi-vehicle motion planning problems,” in 2012 IEEE International

Conference on Robotics and Automation (ICRA), Saint Paul, MN, May 2012, pp.

3315–3322.

[97] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of collision-free

trajectories for a quadrocopter fleet: A sequential convex programming ap-

proach,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Vilamoura, Algarve, Portugal, Oct. 2012, pp. 1917–1922.

[98] Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path planning via

incremental sequential convex programming,” in 2015 IEEE International Con-

ference on Robotics and Automation (ICRA), Seattle, WA, May 2015, pp. 5954–

5961.

[99] R. Deits and R. Tedrake, “Efficient mixed-integer planning for UAVs in cluttered

environments,” in 2015 IEEE International Conference on Robotics and Automa-

tion (ICRA), Seattle, WA, May 2015, pp. 42–49.

[100] H. Fukushima, K. Kon, and F. Matsuno, “Model predictive formation control

using branch-and-bound compatible with collision avoidance problems,” IEEE

Transactions on Robotics, vol. 29, no. 5, pp. 1308–1317, May 2013.

[101] S. K. Gan, R. Fitch, and S. Sukkarieh, “Real-time decentralized search with inter-

agent collision avoidance,” in 2012 IEEE International Conference on Robotics

and Automation (ICRA), Saint Paul, MN, Jun. 2012, pp. 504–510.

Bibliography 204

[102] J. Park, S. Karumanchi, and K. Iagnemma, “Homotopy-based divide-and-

conquer strategy for optimal trajectory planning via mixed-integer program-

ming,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1101–1115, Aug. 2015.

[103] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Model predictive control of swarms

of spacecraft using sequential convex programming,” Journal of Guidance, Con-

trol, and Dynamics, vol. 37, no. 6, pp. 1725–1740, Nov. 2014.

[104] Z. Li, J. Deng, R. Lu, Y. Xu, J. Bai, and C.-Y. Su, “Trajectory-tracking control

of mobile robot systems incorporating neural-dynamic optimized model predic-

tive approach,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,

vol. 46, no. 6, pp. 740–749, Jun. 2016.

[105] Y. Zhou, H. Hu, Y. Liu, S.-W. Lin, and Z. Ding, “A real-time and fully distributed

approach to motion planning for multirobot systems,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, Oct. 2017. [Online]. Available:

https://ieeexplore.ieee.org/document/8055437

[106] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli,

and S. A. Seshia, “Model predictive control with signal temporal logic specifica-

tions,” in 2014 IEEE 53rd Annual Conference on Decision and Control (CDC),

Los Angeles, CA, USA, Dec. 2014, pp. 81–87.

[107] M. Egerstedt, “Motion planning and control of mobile robots,” Ph.D. dissertation,

Department of Mathematics, KTH, 2000.

[108] J.-W. Choi, R. E. Curry, and G. H. Elkaim, “Continuous curvature path genera-

tion based on Bézier curves for autonomous vehicles.” International Journal of

Applied Mathematics, vol. 40, no. 2, 2010.

[109] F. Gao, W. Wu, Y. Lin, and S. Shen, “Online safe trajectory generation for

quadrotors using fast marching method and Bernstein basis polynomial,” in 2018

IEEE International Conference on Robotics and Automation (ICRA), Brisbane,

Australia, 2018, pp. 344–351.

https://ieeexplore.ieee.org/document/8055437

Bibliography 205

[110] F. Gómez-Bravo, F. Cuesta, A. Ollero, and A. Viguria, “Continuous curvature

path generation based on β-spline curves for parking manoeuvres,” Robotics and

Autonomous Systems, vol. 56, no. 4, pp. 360–372, Apr. 2008.

[111] J. J. Liang, H. Song, B. Y. Qu, and Z. F. Liu, “Comparison of three different

curves used in path planning problems based on particle swarm optimizer,” Math-

ematical Problems in Engineering, vol. 2014, Apr. 2014, Article ID 623156, 15

pages.

[112] A. Konar, I. Goswami, S. J. Singh, L. C. Jain, and A. K. Nagar, “A deterministic

improved Q-learning for path planning of a mobile robot,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 43, no. 5, pp. 1141–1153, Sept.

2013.

[113] P. Rakshit, A. Konar, P. Bhowmik, I. Goswami, S. Das, L. C. Jain, and A. K. Na-

gar, “Realization of an adaptive memetic algorithm using differential evolution

and Q-learning: A case study in multirobot path planning,” IEEE Transactions

on Systems, Man, and Cybernetics: Systems, vol. 43, no. 4, pp. 814–831, Jul.

2013.

[114] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially compliant mo-

bile robot navigation via inverse reinforcement learning,” The International Jour-

nal of Robotics Research, vol. 35, no. 11, pp. 1289–1307, Jul. 2016.

[115] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion planning

with deep reinforcement learning,” in 2017 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, Sept. 2017,

pp. 1343–1350.

[116] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-

communicating multiagent collision avoidance with deep reinforcement learn-

ing,” in 2017 IEEE International Conference on Robotics and Automation (I-

CRA), Singapore, May 2017, pp. 285–292.

[117] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic,

decision-making agents with deep reinforcement learning,” in 2018 IEEE/RSJ

Bibliography 206

International Conference on Intelligent Robots and Systems (IROS), Madrid, S-

pain, Oct. 2018, pp. 3052–3059.

[118] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura, “Navigat-

ing occluded intersections with autonomous vehicles using deep reinforcement

learning,” in 2018 IEEE International Conference on Robotics and Automation

(ICRA), Brisbane, Australia, May 2018, pp. 2034–2039.

[119] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis Lectures on

Artificial Intelligence and Machine Learning, vol. 4, no. 1, pp. 1–103, 2010.

[120] J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, and H. Kress-Gazit,

“Collision-free reactive mission and motion planning for multi-robot systems,”

in Robotics Research, A. Bicchi and W. Burgard, Eds. Springer, 2018, pp.

459–476.

[121] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Simultaneous task allocation

and planning for temporal logic goals in heterogeneous multi-robot systems,”

The International Journal of Robotics Research, vol. 37, no. 7, pp. 818–838, Jun

2018.

[122] M. Guo, J. Tumova, and D. V. Dimarogonas, “Hybrid control of multi-agent sys-

tems under local temporal tasks and relative-distance constraints,” in 54th IEEE

Conference on Decision and Control (CDC), Osaka, Japan, Dec. 2015, pp. 1701–

1706.

[123] M. Guo, C. P. Bechlioulis, K. J. Kyriakopoulos, and D. V. Dimarogonas, “Hybrid

control of multiagent systems with contingent temporal tasks and prescribed for-

mation constraints,” IEEE Transactions on Control of Network Systems, vol. 4,

no. 4, pp. 781–792, Dec. 2017.

[124] N. Malone, H.-T. Chiang, K. Lesser, M. Oishi, and L. Tapia, “Hybrid dynamic

moving obstacle avoidance using a stochastic reachable set-based potential field,”

IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1124–1138, Oct. 2017.

Bibliography 207

[125] M. Egerstedt and X. Hu, “A hybrid control approach to action coordination for

mobile robots,” Automatica, vol. 38, no. 1, pp. 125–130, Jan. 2002.

[126] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers for path

planning: A temporal logic approach,” in Proceedings of the 44th IEEE Confer-

ence on Decision and Control (CDC), Seville, Spain, Dec. 2005, pp. 4885–4890.

[127] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration under local

LTL specifications,” The International Journal of Robotics Research, vol. 34,

no. 2, pp. 218–235, Feb. 2015.

[128] S. Akella and S. Hutchinson, “Coordinating the motions of multiple robots with

specified trajectories,” in 2002 IEEE International Conference on Robotics and

Automation (ICRA), Washington, DC, May 2002, pp. 624–631.

[129] K.-D. Kim and P. R. Kumar, “An MPC-based approach to provable system-wide

safety and liveness of autonomous ground traffic,” IEEE Transactions on Auto-

matic Control, vol. 59, no. 12, pp. 3341–3356, Dec. 2014.

[130] D. E. Soltero, S. L. Smith, and D. Rus, “Collision avoidance for persistent mon-

itoring in multi-robot systems with intersecting trajectories,” in 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), San Fran-

cisco, CA, Sept. 2011, pp. 3645–3652.

[131] E. J. Rodrı́guez-Seda, C. Tang, M. W. Spong, and D. M. Stipanović, “Trajectory

tracking with collision avoidance for nonholonomic vehicles with acceleration

constraints and limited sensing,” The International Journal of Robotics Research,

vol. 33, no. 12, pp. 1569–1592, Oct. 2014.

[132] X. Wang, M. Kloetzer, C. Mahulea, and M. Silva, “Collision avoidance of mobile

robots by using initial time delays,” in 2015 IEEE 54th Annual Conference on

Decision and Control (CDC), Osaka, Japan, Dec. 2015, pp. 324–329.

[133] R. C. Coulter, “Implementation of the pure pursuit path tracking algorithm,”

Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-92-01, Jan.

1992.

Bibliography 208

[134] H. Andersen, Z. J. Chong, Y. H. Eng, S. Pendleton, and M. H. Ang, “Geomet-

ric path tracking algorithm for autonomous driving in pedestrian environment,”

in 2016 IEEE International Conference on Advanced Intelligent Mechatronics

(AIM), Banff, AB, Canada, Jul. 2016, pp. 1669–1674.

[135] T. Yamasaki, H. Takano, and Y. Baba, “Robust path-following for UAV using

pure pursuit guidance,” in Aerial Vehicles, T. M. Lam, Ed. InTech, Jan. 2009,

pp. 671–690.

[136] A. Al-Mayyahi, W. Wang, and P. Birch, “Path tracking of autonomous ground ve-

hicle based on fractional order PID controller optimized by PSO,” in 2015 IEEE

13th International Symposium on Applied Machine Intelligence and Informatics

(SAMI), Herl’any, Slovakia, Jan. 2015, pp. 109–114.

[137] B. Hu, G. K. Mann, and R. G. Gosine, “New methodology for analytical and

optimal design of fuzzy PID controllers,” IEEE Transactions on Fuzzy Systems,

vol. 7, no. 5, pp. 521–539, Oct. 1999.

[138] K. Shojaei, “Neural adaptive PID formation control of car-like mobile robots

without velocity measurements,” Advanced Robotics, vol. 31, no. 18, pp. 947–

964, Sept. 2017.

[139] G. Antonelli, S. Chiaverini, and G. Fusco, “A fuzzy-logic-based approach for

mobile robot path tracking,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 2,

pp. 211–221, Apr. 2007.

[140] E. Maalouf, M. Saad, and H. Saliah, “A higher level path tracking controller

for a four-wheel differentially steered mobile robot,” Robotics and Autonomous

Systems, vol. 54, no. 1, pp. 23–33, Jan. 2006.

[141] E. Kim, J. Kim, and M. Sunwoo, “Model predictive control strategy for smooth

path tracking of autonomous vehicles with steering actuator dynamics,” Interna-

tional Journal of Automotive Technology, vol. 15, no. 7, pp. 1155–1164, Dec.

2014.

Bibliography 209

[142] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl,

“Time-optimal path tracking for robots: A convex optimization approach,” IEEE

Transactions on Automatic Control, vol. 54, no. 10, pp. 2318–2327, Oct. 2009.

[143] P. F. Lima, M. Nilsson, M. Trincavelli, J. Mårtensson, and B. Wahlberg, “Spa-

tial model predictive control for smooth and accurate steering of an autonomous

truck,” IEEE Transactions on Intelligent Vehicles, vol. 2, no. 4, pp. 238–250,

Dec. 2017.

[144] H. Ashrafiuon, S. Nersesov, and G. Clayton, “Trajectory tracking control of pla-

nar underactuated vehicles,” IEEE Transactions on Automatic Control, vol. 62,

no. 4, pp. 1959–1965, Apr. 2017.

[145] E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,” ACM Com-

puting Surveys, vol. 3, no. 2, pp. 67–78, Jun. 1971.

[146] Z. Li, N. Wu, and M. Zhou, “Deadlock control of automated manufacturing sys-

tems based on Petri nets−A literature review,” IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 4, pp.

437–462, Jul. 2012.

[147] M. Uzam and M. C. Zhou, “An iterative synthesis approach to Petri net-based

deadlock prevention policy for flexible manufacturing systems,” IEEE Transac-

tions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 37,

no. 3, pp. 362–371, May 2007.

[148] Z. W. Li and M. C. Zhou, “Elementary siphons of Petri nets and their application

to deadlock prevention in flexible manufacturing systems,” IEEE Transactions

on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 34, no. 1,

pp. 38–51, Jan. 2004.

[149] H. Chen, N. Q. Wu, and M. C. Zhou, “A novel method for deadlock prevention

of AMS by using resource-oriented Petri nets,” Information Sciences, vol. 363,

pp. 178–189, Oct. 2016.

Bibliography 210

[150] K. Xing, F. Wang, M. C. Zhou, H. Lei, and J. Luo, “Deadlock characterization

and control of flexible assembly systems with Petri nets,” Automatica, vol. 87,

pp. 358–364, Jan. 2018.

[151] J. Ye, M. Zhou, Z. Li, and A. Al-Ahmari, “Structural decomposition and decen-

tralized control of Petri nets,” IEEE Transactions on Systems, Man, and Cyber-

netics: Systems, vol. 48, no. 8, pp. 1360–1369, Aug. 2018.

[152] J. Luo, Z. Liu, M. Zhou, and K. Xing, “Deadlock-free scheduling of flexible

assembly systems based on Petri nets and local search,” IEEE Transactions

on Systems, Man, and Cybernetics: Systems, Sept. 2018. [Online]. Available:

https://ieeexplore.ieee.org/document/8457481

[153] H. R. Golmakani, J. K. Mills, and B. Benhabib, “Deadlock-free scheduling and

control of flexible manufacturing cells using automata theory,” IEEE Transac-

tions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 36,

no. 2, pp. 327–337, Mar. 2006.

[154] A. Ramirez-Serrano and B. Benhabib, “Supervisory control of multi-workcell

manufacturing systems with shared resources,” in 2000 IEEE International Con-

ference on Robotics and Automation (ICRA), vol. 3, San Francisco, CA, USA,

Apr. 2000, pp. 2847–2852.

[155] H. Hu, Y. Liu, and M. Zhou, “Maximally permissive distributed control of large

scale automated manufacturing systems modeled with petri nets,” IEEE Transac-

tions on Control Systems Technology, vol. 23, no. 5, pp. 2026–2034, Feb. 2015.

[156] H. Cho, T. Kumaran, and R. A. Wysk, “Graph-theoretic deadlock detection and

resolution for flexible manufacturing systems,” IEEE Transactions on Robotics

and Automation, vol. 11, no. 3, pp. 413–421, Jun. 1995.

[157] M. Jager and B. Nebel, “Decentralized collision avoidance, deadlock detection,

and deadlock resolution for multiple mobile robots,” in 2001 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), vol. 3, Maui, HI,

Oct. 2001, pp. 1213–1219.

https://ieeexplore.ieee.org/document/8457481

Bibliography 211

[158] R. L. Moorthy, W. Hock-Guan, N. Wing-Cheong, and T. Chung-Piaw, “Cyclic

deadlock prediction and avoidance for zone-controlled AGV system,” Interna-

tional Journal of Production Economics, vol. 83, no. 3, pp. 309–324, Mar. 2003.

[159] H. Hu and Y. Liu, “Supervisor synthesis and performance improvement for auto-

mated manufacturing systems by using Petri nets,” IEEE Transactions on Indus-

trial Informatics, vol. 2, no. 11, pp. 450–458, Apr. 2015.

[160] H. Hu and M. Zhou, “A Petri net-based discrete-event control of automated man-

ufacturing systems with assembly operations,” IEEE Transactions on Control

Systems Technology, vol. 23, no. 2, pp. 513–524, Mar. 2015.

[161] C.-C. Lee and J. T. Lin, “Deadlock prediction and avoidance based on Petri nets

for zone-control automated guided vehicle systems,” International Journal of

Production Research, vol. 33, no. 12, pp. 3249–3265, Dec. 1995.

[162] S. A. Reveliotis and E. Roszkowska, “Conflict resolution in free-ranging multive-

hicle systems: A resource allocation paradigm,” IEEE Transactions on Robotics,

vol. 27, no. 2, pp. 283–296, Apr. 2011.

[163] L. Kalinovcic, T. Petrovic, S. Bogdan, and V. Bobanac, “Modified banker’s algo-

rithm for scheduling in multi-agv systems,” in IEEE Conference on Automation

Science and Engineering, Trieste, Italy, Oct. 2011, pp. 351–356.

[164] M. P. Fanti, A. M. Mangini, G. Pedroncelli, and W. Ukovich, “Decentralized

deadlock-free control for AGV systems,” in 2015 American Control Conference

(ACC), Chicago, IL, USA, Jul. 2015, pp. 2414–2419.

[165] A. Yalcin and T. O. Boucher, “Deadlock avoidance in flexible manufacturing

systems using finite automata,” IEEE Transactions on Robotics and Automation,

vol. 16, no. 4, pp. 424–429, Aug. 2000.

[166] Y. Yang, H. Hu, and Y. Liu, “A Petri net-based distributed control of automated

manufacturing systems with assembly operations,” in 2015 IEEE Internation-

al Conference on Automation Science and Engineering (CASE). Gothenburg,

Sweden, Aug. 2015, pp. 1090–1097.

Bibliography 212

[167] J. Hou, H. Hu, Y. Zhou, and Y. Liu, “Decentralized supervisory control of gener-

alized mutual exclusion constraints in Petri nets,” in 2017 13th IEEE Conference

on Automation Science and Engineering (CASE), Xi’an, China, Aug. 2017, pp.

358–363.

[168] Y. Yang, H. Hu, and Y. Liu, “A distributed approach to automated manufacturing

systems with complex structures using Petri nets,” in 2017 IEEE Internation-

al Conference on Robotics and Automation (ICRA), Singapore, May 2017, pp.

3016–3023.

[169] H. Hu, R. Su, M. Zhou, and Y. Liu, “Polynomially complex synthesis of dis-

tributed supervisors for large-scale AMSs using Petri nets,” IEEE Transactions

on Control Systems Technology, vol. 24, no. 5, pp. 1610–1622, Dec. 2016.

[170] H. Hu, Y. Yang, Y. Liu, and N. Du, “Critical stages and their application in large

scale automated manufacturing systems via Petri nets,” in 2016 European Con-

trol Conference (ECC), Jun. 2016, pp. 2337–2344.

[171] S. Reveliotis, Real-time Management of Resource Allocation Systems: A Discrete

Event Systems Approach. New York: Springer Science & Business Media, 2006.

[172] E. W. Dijkstra, “Cooperating sequential processes,” in The Origin of Concurrent

Programming, F. Genuys, Ed. New York: Academic, 1968, pp. 65–138.

[173] M. B. Dias, M. Zinck, R. Zlot, and A. Stentz, “Robust multirobot coordination

in dynamic environments,” in 2004 IEEE International Conference on Robotics

and Automation (ICRA), vol. 4, New Orleans, LA, Apr. 2004, pp. 3435–3442.

[174] K. Goldberg and B. Chen, “Collaborative control of robot motion: Robustness

to error,” in 2001 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), vol. 2, Maui, HI, Oct. 2001, pp. 655–660.

[175] N. Hazon and G. A. Kaminka, “On redundancy, efficiency, and robustness in

coverage for multiple robots,” Robotics and Autonomous Systems, vol. 56, no. 12,

pp. 1102–1114, Dec. 2008.

Bibliography 213

[176] L. E. Parker et al., “ALLIANCE: An architecture for fault tolerant multirobot

cooperation,” IEEE Transactions on Robotics and Automation, vol. 14, no. 2, pp.

220–240, Apr. 1998.

[177] W. Wu and F. Zhang, “Robust cooperative exploration with a switching strategy,”

IEEE Transactions on Robotics, vol. 28, no. 4, pp. 828–839, Aug. 2012.

[178] M. Dogar, R. A. Knepper, A. Spielberg, C. Choi, H. I. Christensen, and D. Rus,

“Multi-scale assembly with robot teams,” The International Journal of Robotics

Research, vol. 34, no. 13, pp. 1645–1659, Nov. 2015.

[179] M. Hofbaur, J. Köb, G. Steinbauer, and F. Wotawa, “Improving robustness of

mobile robots using model-based reasoning,” Journal of Intelligent and Robotic

Systems, vol. 48, no. 1, pp. 37–54, Jan. 2007.

[180] T. Preisler and W. Renz, “Scalability and robustness analysis of a multi-agent

based self-healing resource-flow system,” in 2012 Federated Conference on

Computer Science and Information Systems (FedCSIS), Wroclaw, Poland, Sept.

2012, pp. 1216–1268.

[181] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality and ro-

bustness in multi-robot path planning with temporal logic constraints,” The In-

ternational Journal of Robotics Research, vol. 32, no. 8, pp. 889–911, Jul. 2013.

[182] Z. Liu, H. Wang, L. Xu, Y.-H. Liu, J. Lu, and W. Chen, “A failure-tolerant ap-

proach to synchronous formation control of mobile robots under communication

delays,” in 2018 IEEE International Conference on Robotics and Automation

(ICRA), Brisbane, Australia, May 2018, pp. 1661–1666.

[183] L. Blackmore, H. Li, and B. Williams, “A probabilistic approach to optimal ro-

bust path planning with obstacles,” in 2006 American Control Conference (ACC),

Minneapolis, MN, Jun. 2006, pp. 2831–2837.

[184] L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained optimal path

planning with obstacles,” IEEE Transactions on Robotics, vol. 27, no. 6, pp.

1080–1094, Dec. 2011.

Bibliography 214

[185] Z. Li, J. Li, and Y. Kang, “Adaptive robust coordinated control of multiple mobile

manipulators interacting with rigid environments,” Automatica, vol. 46, no. 12,

pp. 2028–2034, Dec. 2010.

[186] C.-S. Chiu, K.-Y. Lian, and T.-C. Wu, “Robust adaptive motion/force track-

ing control design for uncertain constrained robot manipulators,” Automatica,

vol. 40, no. 12, pp. 2111–2119, Dec. 2004.

[187] S. Liemhetcharat and M. Veloso, “Forming an effective multi-robot team robust

to failures,” in 2013 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), Tokyo, Japan, Nov. 2013, pp. 5240–5245.

[188] F. Mastrogiovanni, A. Sgorbissa, and R. Zaccaria, “Robust navigation in an un-

known environment with minimal sensing and representation,” IEEE Transac-

tions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 1, pp.

212–229, Jan. 2009.

[189] Z. Sun, L. Dai, K. Liu, Y. Xia, and K. H. Johansson, “Robust MPC for tracking

constrained unicycle robots with additive disturbances,” Automatica, vol. 90, pp.

172–184, Apr. 2018.

[190] X. Wang, H. Hu, Y. Zhou, and Y. Liu, “A robust control approach to automated

manufacturing systems allowing failures and reworks with Petri nets,” in 2017

13th IEEE Conference on Automation Science and Engineering (CASE), Xi’an,

China, Aug. 2017, pp. 370–375.

[191] N. Du, H. Hu, and Y. Liu, “Robust control of automated manufacturing systems

with assembly operations using petri nets,” in 2016 IEEE International Confer-

ence on Robotics and Automation (ICRA), Stockholm, Sweden, May 2016, pp.

3632–3638.

[192] N. Du, H. Hu, Y. Zhou, and Y. Liu, “Robust control of automated manufacturing

systems with complex structures using Petri nets,” in 2017 13th IEEE Conference

on Automation Science and Engineering (CASE), Xi’an, China, Aug. 2017, pp.

364–369.

Bibliography 215

[193] E. F. Camacho and C. B. Alba, Model Predictive Control, 2nd ed. London, UK:

Springer Science & Business Media, 2007.

[194] M. Bellare and P. Rogaway, “The complexity of approximating a nonlinear pro-

gram,” in Complexity in Numerical Optimization. World Scientific, 1993, pp.

16–32.

[195] K. Svanberg, “The method of moving asymptotes – A new method for struc-

tural optimization,” International Journal for Numerical Methods in Engineer-

ing, vol. 24, no. 2, pp. 359–373, Feb. 1987.

[196] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cam-

bridge University Press, 2004.

[197] J. Duchi, “Sequential convex programming,” 2018. [Online]. Available:

http://web.stanford.edu/class/ee364b/lectures/seq notes.pdf

[198] J. Van Den Berg and M. Overmars, “Planning time-minimal safe paths amidst un-

predictably moving obstacles,” The International Journal of Robotics Research,

vol. 27, no. 11-12, pp. 1274–1294, Nov. 2008.

[199] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex

programming, version 2.1,” Mar. 2014. [Online]. Available: http://cvxr.com/cvx

[200] H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for robots: Guaran-

tees and feedback for robot behavior,” Annual Review of Control, Robotics, and

Autonomous Systems, vol. 1, pp. 211–236, May 2018.

[201] R. N. Smith, M. Schwager, S. L. Smith, B. H. Jones, D. Rus, and G. S. Sukhatme,

“Persistent ocean monitoring with underwater gliders: Adapting sampling reso-

lution,” Journal of Field Robotics, vol. 28, no. 5, pp. 714–741, Aug. 2011.

[202] K. Kim, G. Fainekos, and S. Sankaranarayanan, “On the minimal revision prob-

lem of specification automata,” The International Journal of Robotics Research,

vol. 34, no. 12, pp. 1515–1535, Aug. 2015.

http://web.stanford.edu/class/ee364b/lectures/seq_notes.pdf
http://cvxr.com/cvx

Bibliography 216

[203] E. Roszkowska and S. Reveliotis, “A distributed protocol for motion coordination

in free-range vehicular systems,” Automatica, vol. 49, no. 6, pp. 1639–1653, Jun.

2013.

[204] J. L. Gross, J. Yellen, and P. Zhang, Handbook of Graph Theory, 2nd ed. Boca

Raton, Florida, USA: CRC Press, 2013.

[205] Q. T. Dinh and M. Diehl, “Local convergence of sequential convex programming

for nonconvex optimization,” in Recent Advances in Optimization and its Ap-

plications in Engineering, M. Diehl, F. Glineur, E. Jarlebring, and M. Michiels,

Eds., 2010, pp. 93–102.

[206] S. M. LaValle and S. A. Hutchinson, “Optimal motion planning for multiple

robots having independent goals,” IEEE Transactions on Robotics and Automa-

tion, vol. 14, no. 6, pp. 912–925, Dec. 1998.

[207] S. M. LaValle, “Robot motion planning: A game-theoretic foundation,” Algorith-

mica, vol. 26, no. 3-4, pp. 430–465, Apr. 2000.

[208] Z. Ding, T. Xu, T. Ye, and Y. Zhou, “Online prediction and improvement of re-

liability for service oriented systems,” IEEE Transactions on Reliability, vol. 65,

no. 3, pp. 1133–1148, Sept. 2016.

[209] Z. Ding, Y. Zhou, G. Pu, and M. Zhou, “Online failure prediction for railway

transportation systems based on fuzzy rules and data analysis,” IEEE Transac-

tions on Reliability, vol. 67, no. 3, pp. 1143–1158, Sept. 2018.

[210] D. Niyato and E. Hossain, “A game theoretic analysis of service competition

and pricing in heterogeneous wireless access networks,” IEEE Transactions on

Wireless Communications, vol. 7, no. 12, pp. 5150–5155, Dec. 2008.

[211] D. Niyato, P. Wang, E. Hossain, W. Saad, and A. Hjorungnes, “Exploiting mo-

bility diversity in sharing wireless access: A game theoretic approach,” IEEE

Transactions on Wireless Communications, vol. 9, no. 12, pp. 3866–3877, Dec.

2010.

Bibliography 217

[212] K. Zhu, E. Hossain, and D. Niyato, “Pricing, spectrum sharing, and service se-

lection in two-tier small cell networks: A hierarchical dynamic game approach,”

IEEE Transactions on Mobile Computing, vol. 13, no. 8, pp. 1843–1856, Dec.

2014.

[213] Z. Ding, Y. Zhou, and M. Zhou, “Modeling self-adaptive software systems with

learning Petri nets,” IEEE Transactions on Systems, Man, and Cybernetics: Sys-

tems, vol. 46, no. 4, pp. 483–498, Apr. 2016.

[214] ——, “Modeling self-adaptive software systems by fuzzy rules and Petri nets,”

IEEE Transactions on Fuzzy Systems, vol. 26, no. 2, pp. 967–984, Apr. 2018.

	Contents
	List of Figures
	List of Tables
	Summary
	1 Introduction
	1.1 Motivations and Challenges
	1.2 Main Work
	1.3 Contributions of the Thesis
	1.4 List of Materials Related to the Thesis
	1.5 Outline of the Thesis

	2 Related Work
	2.1 Motion Planning
	2.2 Deadlock Avoidance
	2.3 Robust Motion

	3 Preliminaries
	3.1 Multi-Robot Systems
	3.2 Labeled Transition Systems
	3.3 Model Predictive Control
	3.4 Sequential Convex Programming

	4 Fully Distributed Approach to Trajectory Planning for Multi-Robot Systems
	4.1 Introduction
	4.2 Problem Statement
	4.3 Formal Modeling for the Problem
	4.3.1 Problem Analysis
	4.3.2 Construction of Distributed Optimization Programming
	4.3.3 Distributivity Analysis

	4.4 Real-Time Trajectory Planning Algorithm
	4.4.1 Convexification of the Non-Convex Constraints
	4.4.2 The Distributed Algorithm to Trajectory Planning

	4.5 Simulated Cases: Implementation and Results
	4.5.1 Case 1: One Robot in a Multi-Obstacle Environment
	4.5.2 Case 2: Multiple Robots in an Obstacle-Free Environment
	4.5.3 Case 3: Multiple Robots with Symmetric Trajectories

	4.6 Discussion
	4.7 Conclusion

	5 Discrete Modeling of Robot Motion in Multi-Robot Systems with Fixed Paths
	5.1 Introduction
	5.2 Determination of Collision Segments
	5.3 Abstraction of Discrete States
	5.4 Labeled Transition Systems Modeling
	5.5 Discussion and Conclusion

	6 Distributed Approach to Collision and Deadlock Avoidance in Multi-Robot Systems
	6.1 Introduction
	6.2 Problem Statement
	6.3 Collision avoidance
	6.4 Deadlock Avoidance
	6.4.1 Deadlock Avoidance Algorithm
	6.4.2 Performance Analysis of the Algorithm

	6.5 Simulation Implementation and Results
	6.5.1 Simulation Case and Results
	6.5.2 Simulation Results on of a Practical Scenario

	6.6 Discussion
	6.7 Conclusions

	7 Distributed Approach to Higher-Order Deadlock Avoidance in Multi-Robot Systems
	7.1 Introduction
	7.2 Problem Statement
	7.3 Higher-Order Deadlocks and Their Avoidance
	7.4 Distributive Analysis
	7.5 Simulation Cases
	7.5.1 Simulation Without Higher-Order Deadlock Avoidance Algorithm
	7.5.2 Simulation Under the Control of the Higher-Order Deadlock Avoidance Algorithm
	7.5.3 Simulation on an Application Scenario in a Warehouse

	7.6 Discussion
	7.7 Conclusion

	8 Distributed Approach to Robust Control for Multi-Robot Systems
	8.1 Introduction
	8.2 Problem Statement
	8.3 Robust Control
	8.3.1 Robust Control Algorithms
	8.3.2 Effectiveness Analysis
	8.3.3 Distributivity and Complexity Analysis

	8.4 Simulation Cases
	8.4.1 Robot Motion without Robustness Algorithms
	8.4.2 Robot Motion with Robustness Algorithms
	8.4.3 Simulation Results on a Real Scenario

	8.5 Conclusion and Discussion

	9 Hybrid Approach to Distributed Motion Control for Multi-Robot Systems
	9.1 Introduction
	9.2 Problem Statement
	9.3 Hybrid Approach to Motion Control
	9.3.1 Discrete Transition Control
	9.3.2 Continuous Speed Adjustment
	9.3.3 Effectiveness Analysis of the Proposed Approach

	9.4 Modeling of Communication Protocols in the Proposed Approach
	9.5 Simulation Cases
	9.5.1 Simulation Results under the Proposed Hybrid Approach
	9.5.2 Comparison of Our Approach with Discrete Control
	9.5.3 A More Complex Scenario

	9.6 Conclusion

	10 Conclusion and Future Research
	10.1 Summary
	10.2 Future Work

	A List of Publications
	Bibliography

